摘 要:作為溫室氣體的主要成分,CO2的減排引起世界各國的密切關(guān)注。較之于傳統(tǒng)的吸收方法,中空纖維膜吸收煙氣中CO2是一種高效、具有良好發(fā)展前景的脫除方法。為此,基于膜吸收過程的傳質(zhì)機(jī)理,從膜材料、膜結(jié)構(gòu)、吸收劑等方面闡述了其發(fā)展與現(xiàn)狀,總結(jié)了吸收劑的吸收與再生特性,分析了CO2比例、氣相流速與壓力、液相流速與壓力等因素對膜吸收過程的影響,并提出了一種采用中空纖維膜接觸器分離煙氣中CO2的方法及系統(tǒng),試驗(yàn)流程主要包括煙氣冷凝、膜吸收以及CO2解吸再生3大部分。同時也指出膜吸收法距離大規(guī)模的商業(yè)化應(yīng)用還存在許多經(jīng)濟(jì)問題與技術(shù)難點(diǎn)亟待解決,未來膜吸收技術(shù)將主要解決以下4個方面的問題:①煙氣來源;②吸收劑與膜材料的選擇;③膜吸收經(jīng)濟(jì)性評估;④膜吸收過程的模擬優(yōu)化。
關(guān)鍵詞:中空纖維膜 吸收 煙氣 二氧化碳 傳質(zhì) 減排 模擬優(yōu)化 經(jīng)濟(jì)性評估 技術(shù)攻關(guān)
Research progress in hollow fiber membranes for CO2 capture
Abstract:The emission reduction of CO2 as the main contributor to greenhouse gases arouses wide public concern all around the world.Compared with the traditional methods,adopting hollow fiber membranes is a high efficiency and prospective way for CO2 removal.In view of this,based on the mass transfer mechanism,we first introduced the development and status quo of the said method in terms of membrane material,membrane structure,absorbent,etc.Also,we summarized the absorption and regeneration of absorbents,and analyzed the impacts of CO2 percentage,gas and liquid-phase flow speeds and pressures on the membrane adsorption process.On this basis,we presented an improved method of adopting a hollow fiber membrane contactor for CO2 capture as well as its testing process flow including condensation of exhaust gas,membrane adsorption,and CO2 desorption and regeneration.On the other hand,we also pointed out that there is still a long way for membrane-based technologies to be put into commercial use due to many economic problems and technical difficulties and the future membrane-based technologies for CO2 capture should focus on the following issues:source of exhaust gas;selection of absorbent and membrane material;economic evaluation of membrane absorption;and simulation and optimization of membrane adsorption process.
Keywords:hollow fiber membrane,absorption,exhaust gas,CO2,mass transfer,emission reduction,simulation and optimization,economic evaluation
近年來,隨著全球變暖的加劇,CO2作為主要溫室氣體其排放控制引起世界各國的廣泛關(guān)注[1]。目前世界主要能源消費(fèi)仍以煤、石油和天然氣等化石類燃料為主。由于我國近些年經(jīng)濟(jì)高速增長,能源需求急速增加導(dǎo)致CO2排放量在2007年達(dá)到60.3×108t,首次超過美國成為最大的CO2排放國家,并且面臨著日益增加的巨大壓力[2]。國內(nèi)目前的能源消費(fèi)由于資源匱乏、技術(shù)落后等原因,煤炭消耗量約占全部能耗的四分之三,其作為主要原料還要持續(xù)至少近50年[3]。人為因素導(dǎo)致大氣中CO2濃度顯著增加,其中燃煤電廠CO2排放量約占全球的1/3。因此,有必要采取措施對燃煤電廠尾部煙氣中大量的CO2進(jìn)行脫除處理。
目前工業(yè)上從煙氣中脫除CO2的方法主要包括溶劑吸收法、膜分離法、變壓吸附法和低溫蒸餾法等傳統(tǒng)技術(shù)[4]。傳統(tǒng)的吸收法分離技術(shù)完善,其回收CO2的純度超過99.9%,而膜分離法能耗較低,所以一種將兩者相結(jié)合的膜基吸收耦合技術(shù),因其氣液接觸面積大、傳質(zhì)速率快、操作彈性大、無液泛、霧沫夾帶和設(shè)備簡單等特點(diǎn)而備受關(guān)注[5]。與傳統(tǒng)分離方法相比,膜吸收法是一種高效、投資與維修費(fèi)用低的煙氣處理方法[6-7]。其中,中空纖維膜接觸器相較于塔設(shè)備具有傳質(zhì)效率高、體積小和價格低廉等優(yōu)勢,已得到廣泛應(yīng)用[8-9]。但目前還未找到CO2吸收和解吸性能均較高的吸收劑,對吸收解吸過程反應(yīng)機(jī)理及影響因素也未能完全弄清。因此,筆者重點(diǎn)對膜吸收CO2原理、工藝因素以及傳質(zhì)過程影響因素進(jìn)行總結(jié)和概述,提出一種新型的CO2膜吸收方案,指出了當(dāng)前膜吸收存在的不足之處與良好的發(fā)展前景。
1 基本原理
膜吸收法是將膜分離和普通吸收結(jié)合起來的一種新型分離過程,多采用微孔膜。該過程中氣液兩相在固定的氣液相界面上發(fā)生接觸與傳質(zhì),且分別在兩側(cè)流動。膜本身對氣體沒有選擇性,只起到隔絕吸收劑和氣體的作用,CO2是在濃度梯度作用下經(jīng)膜擴(kuò)散到液相側(cè)。理論上膜孔可以允許膜一側(cè)被分離的氣體分子不需要很高的壓力就可以穿透到膜另一側(cè),主要依靠吸收劑的選擇性吸收而達(dá)到分離混合氣體的目的[10-11]。其基本原理如圖l所示(以疏水性多孔膜為例)。該技術(shù)實(shí)現(xiàn)氣體分離的推動力是相間濃度差,其傳質(zhì)過程以菲克定律為基礎(chǔ),可分為以下3步:①首先溶質(zhì)從混合氣傳遞到膜孔表面;②溶質(zhì)再由膜孔擴(kuò)散到氣液兩相界面;③溶質(zhì)最終與吸收劑反應(yīng),吸收至液相主體[12-13]。
中空纖維膜吸收CO2傳質(zhì)阻力包括氣、液、膜三相的阻力之和,根據(jù)雙膜理論的傳質(zhì)阻力疊加原理[14],當(dāng)傳質(zhì)過程達(dá)到平衡時,其總傳質(zhì)系數(shù)方程式為:
式中
為總傳質(zhì)阻力;
為氣相側(cè)阻力;
為膜阻力;為液相側(cè)阻力,m為相平衡常數(shù),b為化學(xué)增強(qiáng)因子,K1為液相傳質(zhì)系數(shù)。
表征系統(tǒng)對CO2的傳質(zhì)能力需要計(jì)算傳質(zhì)速率:
式中A為膜接觸器的有效膜面積,Vin、Vout為氣相進(jìn)出處體積流量,mL/min。
一般考察吸收劑的吸收性能和整個系統(tǒng)的吸收效果主要用CO2脫除率來衡量。即
2 傳質(zhì)過程影響因素分析
2.1 CO2比例
燃煤煙氣中CO2比例一般介于10%~20%。楊明芬等[15]首次運(yùn)用實(shí)際煙氣進(jìn)行吸收研究,當(dāng)煙氣中CO2濃度增加,傳質(zhì)速率線性增加,并且在較廣的CO2濃度范圍內(nèi)CO2脫除率保持在90%以上水平。Atchariyawut等[16-17]比較了純CO2和含20%CO2混合氣的脫除性能,得知CO2比例越高引起其流量上升,進(jìn)而增加了傳質(zhì)過程的驅(qū)動力。該現(xiàn)象也在Boributh等[18]、Yan等[19]后續(xù)的研究工作中得到驗(yàn)證。根據(jù)傳質(zhì)雙膜理論,CO2比例越高,氣相邊界層越厚,大量的CO2在膜孔中擴(kuò)散受阻,進(jìn)而減小了總傳質(zhì)系數(shù);而且部分CO2還未與吸收劑完全反應(yīng)便離開膜接觸器,CO2脫除率也就隨之降低。但是隨著CO2體積分?jǐn)?shù)的上升,CO2的相間濃度差增大,從而提高了CO2擴(kuò)散傳質(zhì)速率。
2.2 氣相壓力及流速
當(dāng)氣相流量升高(氣體流速上升)時,CO2脫除率降低而傳質(zhì)速率與總傳質(zhì)系數(shù)則隨之增加。因?yàn)闅庀嗔髁康脑黾?,減薄了膜內(nèi)壁面的氣相邊界層,氣相傳質(zhì)阻力減小,進(jìn)而提高了總傳質(zhì)系數(shù)和傳質(zhì)速率。但是增大氣速雖然改善了傳質(zhì)效果,卻大大縮短了氣體在中空纖維膜接觸器內(nèi)的停留時間,部分CO2未被吸收液吸收即被帶離出膜組件導(dǎo)致CO2出口濃度偏高,影響了CO2脫除效率。氣相壓力增大,傳質(zhì)過程的推動力增大,CO2脫除率和傳質(zhì)通量增大,總傳質(zhì)系數(shù)略有下降。由于CO2傳質(zhì)通量大f晤增大,液相邊界層中CO2處于飽和狀態(tài),在試驗(yàn)中受現(xiàn)有試驗(yàn)條件限制,液相流量無法滿足吸收要求,故氣壓增大時,CO2總傳質(zhì)系數(shù)略有下降。
楊明芬等[15]考察了室溫下不同氣速對MEA(乙醇胺)-CO2脫除率和傳質(zhì)速率的影響,當(dāng)液速一定時,氣速從0.1317m/s開始,每提高0.1m/s,脫除率平均下降18%。同時氣速提高使膜柱內(nèi)煙氣的停留時間從0.617s縮短到0.317s,因此,脫除率大幅度下跌。Mansourizadeh[20-21]在研究CO2氣速與吸收容量關(guān)系的實(shí)驗(yàn)中發(fā)現(xiàn),當(dāng)液速為0.5m/s時,氣相阻力隨氣速逐漸增大,CO2吸收容量變小。同時在氣相壓力變化對吸收性能和操作穩(wěn)定性的研究中,當(dāng)氣相壓力為1×l05Pa時,吸收效果不明顯,在升至6×105Pa的過程中,脫除率增加了50%。Dindore等[22]利用聚丙烯中空纖維膜吸收煙氣中CO2分析了氣相壓力對傳質(zhì)效果的影響,在氣相壓力由l.7×105Pa升至2×106Pa的過程中,CO2的吸收容量和脫除率顯著增強(qiáng)。Khaisri等[23]、Feron等[24]、Razavi等[25]后來驗(yàn)證這一結(jié)論。
2.3 液相壓力及流速
隨著液棚流量的增大,膜接觸器出口CO2濃度減少,脫除率、傳質(zhì)速率和總傳質(zhì)系數(shù)都增大。崗為在氣速和管徑一定的條件下,增加流速可加強(qiáng)了膜內(nèi)流體的擾動狀態(tài),吸收劑分布更均勻。這使得液相邊界層變薄,減小了液棚邊界層傳質(zhì)阻力,增加了液相傳質(zhì)系數(shù)和在界面的吸收速率,提高1廣膜接觸器的分離性能,最終降低了尾氣中的CO2濃度,CO2脫除率也相應(yīng)增大。但當(dāng)液相流量提高到一定程度后,脫除率增幅變緩。同時液相側(cè)壓力升高對CO2傳質(zhì)速率影響不大,煙氣出口中CO2濃度和總傳質(zhì)系數(shù)基本維持不變。
Mohebi等[26]比較了0.1m/s、0.2m/s和0.3m/s這3種吸收劑流速下其進(jìn)出口CO2濃度比分別為0.66、0.72和0.77。Boributh等人[18]通過比較單、雙級膜接觸器通入單一與混合吸收劑的兩級膜接觸器4種模型對不同液速下的吸收效果,得知當(dāng)液速增加時,CO2脫除率得到大大提升。LYU Yuexia等[27]采用0.5mol/L的MEA在聚丙烯中空纖維膜中捕集與N2混合氣中的CO2,在原料氣流量恒定的條件下,研究了8~46mL/min范圍內(nèi)液相流量對吸收性能的影響。結(jié)果表明,當(dāng)增大液相流量時,CO2脫除率從46%上升至95%,傳質(zhì)速率也由2.4×104mol/(m2·s)增加到4.9×104mol/(m2·s)。YAN Shuiping等[19]研究了PG(甘氨乙酸鉀)、MEA和MDEA(甲基二乙醇胺)這3種吸收劑對CO2的脫除性能,發(fā)現(xiàn)當(dāng)液速由0.025m/s上升至0.1m/s時,傳質(zhì)效率也逐漸增大。Atchariyawut等[16]、Scholes等[28]、Yeon等[29]、Rajabzadch等[30]也在研究中得出了類似的研究現(xiàn)象和結(jié)果。
3 工藝因素
3.1 膜結(jié)構(gòu)
中空纖維膜按膜孔徑大小可分為多孔膜和無孔膜。根據(jù)其結(jié)構(gòu)特性呵分為對稱膜、非對稱膜和復(fù)合膜3種形式。多孔膜和經(jīng)過改性的親水或疏水性多孔膜廣泛應(yīng)用于膜吸收過程,這類過程吸收特性取決于分離組分在兩相中的分離系數(shù),膜只起到提供傳質(zhì)界面的作用。復(fù)合膜由于可對起分離作用的表皮層和支撐層分別進(jìn)行材料和結(jié)構(gòu)的優(yōu)化,可獲得性能優(yōu)良的分離膜,并得到國內(nèi)外廣泛應(yīng)用。Chen等[31]采用非對稱熱聚四氟乙烯膜化學(xué)吸收CO2,研究發(fā)現(xiàn)非對稱式比對稱式有更好的脫除效果。同時當(dāng)加熱膜材料可使膜傳質(zhì)系數(shù)增強(qiáng),減弱了膜的潤濕性,更持久耐用。
在中空纖維膜根數(shù)與直徑一定的條件下,纖維膜長度的增加使膜表面積增大,進(jìn)而增加了CO2在液相中的停留時間,有利于充分吸收反應(yīng)。但膜柱過長將導(dǎo)致吸收液趨于飽和,使氣液傳質(zhì)推動力減小、傳質(zhì)效率下降。Boributh等[32]也在0.25m、0.5m和0.7m這3種膜柱長度的試驗(yàn)對比中,得出應(yīng)用0.7m膜柱長度的CO2脫除率比前兩種分別提高了l5.27%和3.58%。
3.2 膜材料
膜材質(zhì)主要為有機(jī)聚合物膜、無機(jī)膜、有機(jī)無機(jī)復(fù)合膜3種。其中被廣泛采用的膜材料為聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、聚砜(PS)、聚醚砜(PES)、聚偏二氟乙烯(PVDF)等[33-34]。目前采用的各種膜材料均為疏水性膜材料,這樣吸收過程中氣相充滿中空纖維膜孔,比親水性膜材料擁有更大的接觸面積。中空纖維膜組件采用的膜材料不盡相同,其中聚丙烯膜由于材質(zhì)價格便宜,在工業(yè)上得到大規(guī)模應(yīng)用。而聚四氟乙烯膜則展現(xiàn)了良好的力學(xué)性能和自潤滑性質(zhì),耐高低溫,抗化學(xué)腐蝕,優(yōu)于其他膜材料。
CHENG Lihua等[13]采用碳酸酐酶中空纖維膜接觸器脫除封閉空間內(nèi)的CO2,發(fā)現(xiàn)該復(fù)合膜兼?zhèn)淞舜姿崂w維膜(CA)與聚乙烯膜的優(yōu)點(diǎn),不僅提高了CO2的脫除率,同時將進(jìn)料氣中CO2含量從0.52%降至0.09%以下。Rahbari-Sisakht等[35-37]相繼在利用改性前后的聚砜與聚偏氟乙烯中空纖維膜接觸器物理與化學(xué)吸收CO2中對比發(fā)現(xiàn),在加入等量的丙三醇條件下,進(jìn)行表面改性的膜接觸器體現(xiàn)了更高的臨界水入口壓力和CO2吸收效率。Khaisri等[23]利用聚丙烯、聚四氟乙烯和聚偏二氟乙烯三種膜材料與MEA溶液分別進(jìn)行吸收混合氣中CO2對比發(fā)現(xiàn),它們的穩(wěn)定性順序?yàn)?span lang="EN-US">PTFE>PVDF>PP,并且聚四氟乙烯膜在60h長時間運(yùn)行下,仍保持較好的吸收性能。而Mansourizadeh等[38]也發(fā)現(xiàn)在同一液速下,聚偏二氟乙烯膜吸收CO2容量比商業(yè)聚四氟乙烯高出68%。Constantinou等[39]也對比了氮化硅無機(jī)膜與聚四氟乙烯有機(jī)膜的CO2分離性能。
3.3 膜接觸器聯(lián)接形式
膜接觸器聯(lián)接形式一般分為單根、串聯(lián)與并聯(lián)3種。Boributh等[18]在膜組件布置情況對氣液接觸過程CO2吸收性能影響的模型研究中,對比了單根、串聯(lián)和并聯(lián)3種模型的吸收效果,發(fā)現(xiàn)串聯(lián)形式有最優(yōu)的吸收性能。張衛(wèi)風(fēng)等臥陽發(fā)現(xiàn)串、并聯(lián)的方式由于增加了接觸面積,故比單根膜組件吸收效果更好。同時串聯(lián)方式因?yàn)樵黾恿宋招谐?,增大了氣液反?yīng)時間,具有較高的脫除率。
3.4 氣液流程及流動方式
氣液兩相在膜接觸器內(nèi)的流動,一般可分為吸收劑流經(jīng)膜內(nèi),煙氣流經(jīng)膜外和煙氣流經(jīng)膜內(nèi),吸收劑流經(jīng)膜外兩種形式。為了解氣液兩相流程對CO2分離效果的影響,陳煒等[41]用聚丙烯中空纖維微孔膜從CO2/N2混合氣中分離CO2,試驗(yàn)表明管程的脫除率比殼流程高出20%~40%。根據(jù)膜內(nèi)外氣液兩相流動方式的不同,可分錯流、逆流和并流3種方式。Demontigny等[42]也在試驗(yàn)中驗(yàn)證了這一結(jié)果,在相同試驗(yàn)條件下,逆流比并流傳質(zhì)效率提高了20%。同時發(fā)現(xiàn)吸收液管程流動吸收性能優(yōu)于殼程流動,與Rajabzadeh[43]的研究結(jié)果相同。所以目前大多數(shù)研究采用液相走管程與逆流流動方式,具有高效的吸收效率與傳質(zhì)性能。但由于殼流程中煙氣中含有顆粒粉塵等雜質(zhì)容易堵塞膜孔,且不易清洗,故一般較少采用。
3.5 吸收劑
膜吸收中采用的吸收劑由水、強(qiáng)堿溶液、無機(jī)鹽溶液類發(fā)展到傳統(tǒng)的醇胺溶液,再到含有添加劑或者幾種溶液的混合吸收劑。選擇吸收劑應(yīng)該考慮其吸收容量、溶解度、再生能力以及再生能耗等因素;另外考慮吸收劑的黏度、揮發(fā)性和表面張力等物性參數(shù),以及對膜材料的潤濕性、良好的熱穩(wěn)定性等,這些都是影響膜吸收過程傳熱、傳質(zhì)和反應(yīng)等的重要因素。
Kumar等[44]和Ma’mun等[45]采用了牛磺酸鉀(PT)和甘氨酸鈉(SG)兩種溶液吸收CO2。曹義嗚等[46]用中空纖維致密膜吸收CO2比較吸收劑的脫除率時發(fā)現(xiàn)分離效率順序?yàn)?span lang="EN-US">NaOH>MEA>DEA>TEA>H2O,其中用NaOH作為吸收劑時,其吸收效果與自然滲透接近。賴春芳等[47]運(yùn)用疏水性聚偏氟乙烯中空纖維膜分離模擬煙氣中的CO2時,考察了不同吸收劑分離性能為NaOH>GLY(氨基酸鉀)>H2O,且分離效率隨吸收液濃度和流動速率提高而增大,隨氣體流動速率和CO2濃度增大而減小。Al-marzouqi等[48]在大量膜吸收混合氣體中CO2的試驗(yàn)研究中,先后發(fā)現(xiàn)部分吸收劑的分離效率順序分別為TEPA>TETA>DETA>EDA>MEA>DEA>MDEA。Demontigny等[42]和Jamal等[49]都曾報(bào)道過3種吸收劑的分離效率大小順序?yàn)?span lang="EN-US">MEA>AMP>DEA。張衛(wèi)風(fēng)等[40,50-51]對模擬煙氣的試驗(yàn)研究結(jié)果表明,吸收效果為NaOH>MEA>DEA>TEA。同時為減少試驗(yàn)所需能耗,要求吸收劑高效循環(huán)利用,在試驗(yàn)中發(fā)現(xiàn)解吸效果為GLY<MEA<MDEA,此外GLY解吸最困難,MDEA吸收容量大,解吸效果最好。Yang等[52]在利用醇胺溶液吸收與解吸CO2研究中,亦發(fā)現(xiàn)解吸效率為MEA<MMEA%MDEA,晏水平[53]在單一吸收劑吸收CO2再生性能研究中,發(fā)現(xiàn)吸收劑再生排序?yàn)?span lang="EN-US">TEA≈MDEA>AMP>DEA>DIPA>PG>PZ>MEA。杜敏等[54-57]率先引用pH值擺動法對醇胺溶液吸收與解吸CO2的反應(yīng)機(jī)理進(jìn)行了研究(圖2)。實(shí)驗(yàn)表明在相同的試驗(yàn)條件下,MEA吸收速率最高,MDEA解吸速率最高,發(fā)現(xiàn)采用混合胺溶液吸收與解吸特性介于單胺之間。
表1為常見的膜吸收法中CO2吸收劑的吸收與解吸性能。其中CO2吸收性能排序?yàn)?span lang="EN-US">NaOH>GLY>MEA>DEA>DIPA>AMP>TEA>MDEA>H2O;CO2再生性能排序?yàn)?span lang="EN-US">TEA≈MDEA>DEA>AMP>DIPA>MEA>NaOH。
此外,由于單一吸收劑不能完全滿足高再生性能與高吸收速率,研究者們在混合吸收劑的探索中取得了較大進(jìn)展。常用的活化添加劑有醇胺、烯胺以及脂肪胺等。Wongrong等[58]發(fā)現(xiàn)在MEA中添加甘氨酸鈉溶液吸收效果有較大改善。Chen等[59]考察了6種不同配比的MEA/MDEA和PG/MDEA混合液,發(fā)現(xiàn)當(dāng)MDEA在混合液中比例為3:2時,脫除效率可達(dá)99%,并且反應(yīng)更持久。楊波等[60]在氨基酸鉀中加入活化劑哌嗪(PZ)后,捕集濃度為15%的CO2模擬煙氣,CO2脫除率得到不斷提升。晏水平[53]通過大量實(shí)驗(yàn)研究了不同配比混合吸收劑的吸收與再生性能,發(fā)現(xiàn)在三級胺溶液中添加中等含量活化劑時性能最佳。表2總結(jié)了部分國內(nèi)外學(xué)者進(jìn)行膜吸收試驗(yàn)的條件及參數(shù)。綜上所述,MEA/TEA、PZ/TEA、MEA/MDEA、PZ/MDEA、MEA/AMP、PZ/AMP和PZ/DEA等混合吸收劑體現(xiàn)了良好的綜合性能。因此,采用具有高CO2吸收和再生性能的吸收劑組成的混合吸收劑理論上能獲得較好的CO2吸收與再生綜合性能。所以,在規(guī)模化應(yīng)用中,應(yīng)當(dāng)根據(jù)實(shí)際情況進(jìn)行適當(dāng)?shù)蛘?,確定最優(yōu)的活化劑種類與濃度,達(dá)到最佳吸收效果,找到一種高效吸收與再生的吸收劑。
為研究不同來源原料氣下膜吸收法的吸收與解吸特性,比較傳統(tǒng)與非傳統(tǒng)再生方法的差異,改善當(dāng)前解吸能耗大、能源浪費(fèi)等問題,筆者提出一種采用中空纖維膜接觸器分離煙氣中CO2的方法及系統(tǒng)(圖3),試驗(yàn)流程主要包括煙氣冷凝、膜吸收以及CO2解吸再生3大部分。燃煤尾氣經(jīng)煙氣冷凝器降溫后,送入中空纖維膜接觸器1,與吸收劑充分反應(yīng),其中CO2被吸收,吸收富液經(jīng)過加熱器,在中空纖維膜接觸器2中減壓再生或氣液分離器中分離出CO2,最后通過真空泵調(diào)節(jié)真空度,收集高濃度CO2氣體。而再生后的吸收貧液則經(jīng)過冷凝器降溫返回吸收液箱,進(jìn)行連續(xù)循環(huán)流動試驗(yàn)。同時此方法也可以采用模擬煙氣進(jìn)行試驗(yàn),與實(shí)際煙氣對比研究。該系統(tǒng)首次對煤、天然氣、生物質(zhì)產(chǎn)氣鍋爐實(shí)際煙氣進(jìn)行排放處理,同時也可對周期性循環(huán)進(jìn)行單根、串聯(lián)與并聯(lián)膜組件吸收試驗(yàn),對比CO2傳統(tǒng)與非傳統(tǒng)再生試驗(yàn),研究水蒸氣、N2等不同吹掃氣氛下的CO2回收特性以及考察真空度變化對CO2純度的影響[77]。
4 結(jié)論和展望
近些年來,全球日益變暖,全球減碳工作刻不容緩,膜分離吸收CO2的研究工作受到越來越多的關(guān)注。膜吸收技術(shù)由于在操作、成本和能耗等方面的一系列優(yōu)勢,雖然在電廠煙氣減碳排放工作中具有良好的應(yīng)用前景,如應(yīng)用到脫除SO2、H2S、NH3等酸性氣體以及燃煤、天然氣和生物質(zhì)等電廠尾部煙氣處理工作中,但是距離大規(guī)模的商業(yè)化應(yīng)用還存在許多經(jīng)濟(jì)問題與技術(shù)難點(diǎn)亟待解決。所以,未來膜吸收技術(shù)將主要解決以下4個方面的問題。
1)煙氣來源方面。目前膜吸收CO2的試驗(yàn)研究主要采用模擬氣體為主,僅少量學(xué)者用實(shí)際煙氣進(jìn)行研究。但是在電廠運(yùn)行過程中尾部煙氣可能存在諸如CH4、SO2、H2S等雜質(zhì)氣體以及吲體粉塵顆粒,對試驗(yàn)結(jié)果造成負(fù)面影響,所以需要考慮干擾因素的影響,更為符合電廠煙氣的實(shí)際狀況。
2)吸收劑與膜材料選擇方面。吸收劑應(yīng)具備良好的分離與再生性能、成本低等優(yōu)點(diǎn),著力加強(qiáng)減少吸收劑在解吸時能耗的研究,進(jìn)而降低運(yùn)行成本。同時進(jìn)一步開發(fā)耐高溫、耐腐蝕、易清洗、抗污染的膜材料,也可從無機(jī)膜、金屬膜中尋找突破,研制出疏水性強(qiáng)、穩(wěn)定性高、薄層化的新型膜,同時提高膜的選擇性和滲透性仍將是工作的重點(diǎn)。
3)膜吸收經(jīng)濟(jì)性評估方面。當(dāng)前還缺乏對膜吸收過程周詳?shù)慕?jīng)濟(jì)性評估和分析,需要對國內(nèi)各地實(shí)際燃煤電廠煙氣脫碳系統(tǒng)進(jìn)行深入考察,尋求不同煤種以及電廠規(guī)模對吸收效果的影響,得到最優(yōu)的工藝流程和最佳的性能參數(shù)。
4)膜吸收過程模擬優(yōu)化方面。由于膜材料與膜結(jié)構(gòu)以及吸收劑的差異,應(yīng)不斷優(yōu)化膜吸收過程的擴(kuò)散傳質(zhì)模型,同時加強(qiáng)CO2與新型吸收劑等反應(yīng)動力學(xué)以及熱力學(xué)的研究,選取最優(yōu)的參數(shù)與條件,提高脫除效率。
參考文獻(xiàn)
[1]LUIS P,VAN GERVEN T,VAN DER BRUGGEN B.Recent developments in membrane—based technologies for CO2 capture[J].Progress in Energy and Combustion Science,201 2,38(3):419-448.
[2]International Energy Agency(IEA).world energy outlook 2007:China and India insights[R].Paris:IEA,2007.
[3]PENMAN J,KRUG-ER D,GALBALLY I E,et al.Good practice guidance and uncertainty management in national greenhouse gas inventories[R].Kanagawa,Japan:Intergovernmental Panel on Climate Change,2000.
[4]韓永嘉,王樹立,張鵬宇,等.CO2分離捕集技術(shù)的現(xiàn)狀與進(jìn)展[J].天然氣工業(yè),2009,29(12):79-82.
HAN Yongjia,WANG Shuli,ZHANG Pengyu,et al.Current status and advances in CO2 separation and capture technology[J].Natural Gas Industry,2009,29(12):79-82.
[5]RAOA B,RUBIN E S.A technical,economic,and environmental assessment of amine based CO2 capture technology for power plant greenhouse gas control[J].Environmental Science&Technology,2002,36(20):4467-4475.
[6]GABELMAN A,HUANG S T.Hollow fiber membrane contactors[J].Journal of Membrane Science,1999,159(1/2):61-106.
[7]KALDIS S P,SKODRAS G,SAKELLAROPOULOS G P.Energy and capital cost analysis of CO2 capture in coal IGCC processes via gas separation membranes[J].Fuel Processing Technology,2004,85(5):337-346.
[8]MEDINA-GONZALEZ Y,LASSEUGUETTE E,ROUCH J C,et al.Improving PVDF hollow fiber membranes for CO2 gas capture[J].Separation and Purification Technology,2012,47(11):1596-1605.
[9]HE X,HGG M B.Hollow fiber carbon membranes:Investigations for CO2 capture[J].Journal of Membrane Science,20ll,378(1/2):1-9.
[10]LI Jingliang,CHEN Binghung.Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors[J].Separation and Purification Technology,2005,41(2):109-122.
[11]wANG L,ZHANG Z,ZHAOB,et al.Effect of longterm operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO2 absorption[J].Separation and Purification Technology,2013,116:300-306.
[12]BOUCIF N,FAVRE E,ROIZARD D.CO2 capture in HFMM contactor with typical amine solutions:A numerical analysis[J].Chemical Engineering Science,2008,63(22):5375-5385.
[13]CHENG Lihua,ZHANG Lin,CHEN Huanlin,et al.Hollow fiber contained hydrogel CA membrane contactor for carbon dioxide removal from the enclosed spaces[J].Journal of Membrane Science,2008,324(1/2):33-43.
[14]ATCHARIYAWUT S,FENG C,WANG R,et al.Effect of membrane structure on mass transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers[J].Journal of Membrane Science,2006,285(1/2):272-281.
[15]楊明芬。方夢祥,張衛(wèi)風(fēng),等.膜吸收法脫除電廠模擬煙氣中的CO2[J].環(huán)境科學(xué),2005,26(4):24-29.
YANG Mingfen,FANG Mengxiang,ZHANG Weifeng,et al.Removal of CO2 from simulated flue gas of power plants by membrane based gas absorption processes[J].Environmental Science,2005,26(4):24-29.
[16]ATCHARIYAWUT S,JIRARATANANON R.WANG R.Separation of CO2 from CH4 by using gas-liquid membrane contacting process[J].J ournal of Membrane Science,2007,304(1/2):163-172.
[17]ATCHARIYAWUT S,JIRARATANANON R,WANG R.Mass transfer study and modeling of gas liquid membrane contacting process by multistage cascade model for CO2 absorption[J].Separation and Purification Technology,2008,63(1):15-22.
[18]BORIBUTH S,ASSABUMRUNGRAT S,LAOSIRIPO J ANA N,et al.Effect of membrane module arrangement of gas liquid membrane contacting process on CO2 absorption performance:A modeling study[J].Journal of Merebrane Science,2011,372(1/2):75-86.
[19]YAN Shuiping,FANG Mengxiang,ZHANG Weifeng,et al.Experimental study on the separation uf CO2 from flue gas using hollow fiber membrane contactors without wetting[J].Fuel Processing Technology,2007,88(5):501-511.
[20]MANSOURIZADEH A.Experimental study of CO2 absorption/stripping via PVDF hollow fiber membrane contactor[J].Chemical Engineering Research and Design,2012,90(4):555-562.
[21]MANSOURIZADEH A,ISMAILA F,MATSUURA T.Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor[J].Journal of Membrane Science,2010,353(1/2):192-200.
[22]DINDORE V Y,BRILMAN D W F,FERON P H M,et al.CO2 absorption at elevated pressures using a hollow fiber membrane contactor[J].Journal of Membrane Science,2004,235(1/2):99-109.
[23]KHAISRI S,DEMONTIG-NY D,TONTIWACHWUTHIKUL P,et al.Comparing membrane resistance and absorption performance of three different membranes in a gas absorption nlemhrane contactor[J].Separation and Purification Technology,2009,65(3):290-297.
[24]FERON P H M,JANSEN A E.CO2 separation with polyolefin membrane contactors and dedicated absorption liauids:Performances and prospects[J].Separation and Purification Technology,2002,27(3):231-242.
[25]RAZAVI S M R,RAZAVI S M J,MIRI T,et al.CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine[J].International Journal of Green house Gas Control,2013,l5(7):142-149.
[26]MOHEBI S,MOUSAVI S M,KIANI S.Modeling and simulation of sour gas membrane absorption system:Influence of operational parameters on species removal[J].Journal of Natural Gas Science and EngineerinG,2009,1(6):l95-204.
[27]LYU Yuexia,Yu Xinhai,Tu Shantung,et al.Experitmental studies on simultaneous removal of CO2 and SO2 in a polypropyleme hollow fiber membrane contactor[J].Applied Energy,2012,97(11):283-288.
[28]SCHOLES C A,SIMIONI M,QADER A,et al.Membrane gas solvent contactor trials of CO2 absorption from syngas[J].Chemical Engineering Journal,2012,l95-l96(7):188-197.
[29]YEON S H,LEE K S.SEA B,et al.Application of pilotscale membrane contactor hybrid system for removal of carbon dioxide from flue gas[J].Journal of Membrane Science,2005,257(1/2):156-160.
[30]RAJABZADEH S,TERAMOTOM,ALMARZOUQI M H,et al.Experimental and theoretical sludy on propylene absorption by using PVDF hollow fiber membrane contactors with various membrane structures[J].Journal of Membrane Science,2010,346(1):86-97.
[31]CHEN S C,LIN S H,CHIEN R D,et al.Chemical absorption of carbon dioxide with asymmetrically heated polytetrafluoroethylene membranes[J].Journal of Environmental Management,2011,92(4):1083-1090.
[32]BORIBUTH S,ASSABUMRUNGRAT S,LAOSIRIPO JANA N,et al.A modeling study on the effects of membrane characteristics and operating parameters on physical absorption of CO2 by hollow fiber membrane contactor[J].Journal of Membrane Science,2011,380(1/2):21-33.
[33]ZHANG Lizhi,HUANG Simin,CHI Junhui,et al.Conjugate heat and mass transfer in a hollow fiber membrane module for liquid desiccant air dehumidification:A free surface model approach[J].International Journal of Heat and Mass Transfer,2012,55(13/14):3789-3799.
[34]ZHANG Yuan,WANG Rong.Gas-liquid membrane contactors for acid gas removal:Recent advances and futurechallenges[J].Current Opinion in Chemical Engineering,2013,2(2):255-262.
[35]RAHBARl-SISAKHT M,ISMAIL A F,MATSUURA T.Development of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption[J].Separation and Purification Technology,2012,86(2):215-220.
[36]RAHBARI SISAKHT M,ISMAIl,A F,MATSUURA T.Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption[J].Separation and Purification Technology,2012,88(3):99-106.
[37]RAHBARI SISAKHT M,ISMAIL A F,RANA D,et al.Carbon dioxide stripping from diethanolamine solution through porous surface modified PVDF hollow fiber membrane contactor[J].Journal of Membrane Science,2013,427:270-275.
[38]MANSOURIZADEH A,ISMAILA F.A developed asymmetric PVDF hollow fiber membrane structure for CO2 absorption[J].International Journal of Greenhouse Gas Control,2011,5(2):374-380.
[39]CONSTANTINOU A,BARRASS S,PRONK F,et al.CO2 absorption in a high efficiency silicon nitride meshcontactor[J].Chemical Engineering Journal,2012,207-208:766-771.
[40]張衛(wèi)風(fēng).中空纖維膜接觸器分離燃煤煙氣中二氧化碳的試驗(yàn)研究[D].杭州:浙江大學(xué),2006.
ZHANG Weifeng.Experimental study on separation carbon dioxide from flue gases using hollow fiber nlenlbrane contactor[D].Hangzhou:Zhejiang University,2006.
[41]陳煒,朱寶庫,王建黎,等.中空纖維膜接觸器分離CO2/N2混合氣體的研究[J].膜科學(xué)與技術(shù),2004,24(1):32-37.
CHEN Wei,ZHU Baoku,WANG Jianli,et al.Study on hollow fiber nlelllbranc contactor for the separation of carbon dioxide from carbon dioxide nitrogen mixture[J].Menbrane Science and Technology,2004,24(1):32-37.
[42]DEMONTIGNY D,TONTlWACHWUTHIKUL P,CHAKMA A.Using polypropylene and polytetrafluoro-ethylene membranes in a membrane contactor for CO2 absorption[J].Journal of Membrane Science,2006,277(1/2):99-107.
[43]RAJABZADEH S.YOSHIMOTOS.TERAMOTOM,et al.CO2 absorption by using PVDF hollow fiber membrane contactors with various niernbrane structures[J].Separation and Purification Technology,2009,69(2):210-220.
[44]KUMAR P S,HOGENDOORN J A,FERON P H M,et al.New absorption liquids for the removal of CO2 from dilute gas strcanls using membrane contactors[J].Chcmical Engineering Science,2002,57(9):1639-1651.
[45]MA’MUN S,SVENDSEN H F,HOFF K A et al.Selection of new absorbents for carbon dioxide capture[J].Energy Conversion and Management,2007,48(1):251-258.
[46]孫承貴,曹義鳴,左莉,等.中空纖維致密膜基吸收CO2傳質(zhì)過程[J].高等學(xué)校化學(xué)學(xué)報(bào),2005,26(11):2097-2102.
SUN Chenggui,CAO Ying,ZUO Li.et al.Mass transfer mechanism of CO2 absorption through a non-porous hollow fiber contactor[J].Chemical Jou rnal of Chinese Universities,2005,26(11):2097-2102.
[47]賴春芳,楊波,張同亮,等.PVDF中空纖維膜吸收器捕獲煙氣CO2的工藝技術(shù)[J].化工學(xué)報(bào),2012,63(2):500-507.
LAI Chunfang,YANG Bo,ZHANG Guoliang,et al.Factors influencing CO2 capture by PVDF membrane contactor[J].Journal of Chemical hldustry and hlgineering(China),2012,63(2):500-507.
[48]AL-MARZOUQI M H,MARZOUK S A M.EL-NAASM H,et al.CO2 removal from CO2-CH4 gas mixture using different solvents and hollow fiber membranes[J].Industrial and Engineering Chemistry Research,2009,48(7):3600-3605.
[49]JAMAL A,MEISIiN A,LIM C J.Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-Ⅱ:Experimental results and parameter estimation[J].Chemical Engineering Science,2006,61(19):6590-6603.
[50]張衛(wèi)風(fēng),方夢祥,晏水平,等.不同中空纖維膜接觸器分離煙氣中CO2的性能比較[J].動力工程,2007,27(4):606-610.
ZHANG Weifeng,FANG Mengxiang,YAN Shuiping,et al.Comparison of dissociation performance of CO2 from flue gas by hollow fiber membrane contactors[J].Journal of Power Engineering,2007,27(4):606-610.
[51]袁文峰,張衛(wèi)風(fēng),王樹源,等.微孔型膜接觸器分離模擬煙氣中二氧化碳的研究[J].能源工程,2004(4):9-12.
YUAN Wenfeng,ZHANG Weifeng,WANG Shuyuan,et al.CO2 separation from flue gases by polypropylene hollow fiber membrane contactor[J].Energy Engineering,2004(4):9-12.
[52]YANG Q,BOWN M,ALI A,et al.A carbon-l3 NMR study of carbon dioxide absorption and desorption with aqueous amine solutions[J].Energy Procedia,2009,1(1):955-962.
[53]晏水平.膜吸收和化學(xué)吸收分離CO2特性的研究[D].杭州:浙江大學(xué),2009.
YAN Shuiping.Study on CO2 separation characteristic by using membrane gas absorption and chemical absorption technology[D].Hangzhou:Zhejiang University,2009.
[54]FENG Bo,DU Min,DENNIS T J,et al.Reduction of energy requirement of CO2 desorption by adding acid into CO2-loaded solvent[J].Energy&Fuels,2010,24(1):213-219.
[55]杜敏,張力,馮波.pH值調(diào)節(jié)劑對CO2吸收富液解吸能耗的影響[J].重慶大學(xué)學(xué)報(bào),2010,33(8):l23-129.
DU Min,ZHANG Li,FENG Bo.Effect of pH controlling method on energy consumption of CO2 desorption from rich solvent[J].Journal of Chongqing University,2010,33(8):123-129.
[56]杜敏,張力,馮波.己二酸對MEA吸收-解吸CO2過程的影響[J].化工學(xué)報(bào),20ll,62(2):412-419.
DU Min,ZHANC-Li,FENG Bo.Effect of adipic acid on absorption and desorption of CO2 with MEA solut ion[J].Chemical Industry and Engineering(China),2011,62(2):412-419.
[57]杜敏.醇胺吸收—解吸CO2過程的優(yōu)化及pH值擺動法的應(yīng)用[D].重慶:重慶大學(xué),2010.
DU Min.Optimization the process of CO2 absorption-desorption with alkanolamine and application of pH swing method[D].Chongqing:Chongqing University,2010.
[58]RONGWONG W,JIRARATANANON R,ATCHAR IYAWUT S.Experimental study on membrane wetting in gas-liquid membrane contacting process for CO2 absorption by single and mixed absorbents[J].Separation and Purification Technology,2009,69(1):118-125.
[59]CHEN R,CUI L X.Experimental study on the separation of CO2 flue gas using hollow fiber membrane contactors with mixed absorbents[J].Advanced Materials Research,2012,573-574(18):18-22.
[60]楊波,張國亮,賴春芳,等.新型膜吸收技術(shù)及其在電廠煙氣CO2脫除中的應(yīng)用[J].熱力發(fā)電,2012,41(8):107-110.
YANG Bo,ZHANG Guoliang,LAI Chunfang,et al.Newtype membrane absorptiontechnology and its application in CO2 removal in power plan ts[J].Thermal Power Generation,2012,4l(8):107-110.
[61]CHEN S C,LIN S H,CttlEN R D,et al.Effects of shape,porosity,and operating parameters on carbon dioxide recovery in polytetrafluoroethylene membranes[J].Journal of Hazardous Materials,2010,l79(1/3):692-700.
[62]LIN S H,HSIEH C F,LI M H,et al.Determination of mass transfer resistance during absorption of carbon dioxide by mixed absorbents in PVDF and PP membrane contactor[J].Desalination,2009,249(2):647-653.
[63]FAIZ R,AL-MARZOUQI M.Insights on natural gas purification:Simultaneous absorption of CO2 and H2S using metTlbrane contactors[J].Separation and Purification Technology,2011,76(3):351-361.
[64]AL MARZOUQI M,ELNAAs M,MARZ0uK S,et al.Modeling of chemical absorption of CO2 in membrane contactors[J].Separation and Purification Technology,2008,62(3):499-506.
[65]FAIZ R,ELNAAS M H,AL-MARZOUQI M.Significance of gas velocity change during the transport of CO2 through hollow fiber membrane contactors[J].Chemical Engineering Journal,2011,168(2):593-603.
[66]GHASEM N,AL-MARZOUQI M,RAHIM N A.Modeling of CO2 absorption in a membrane contactor considering solvent evaporation[J].Separation and Purification Technology,2013,ll0:1-10.
[67]FAIZ R,AL-MARZOUQI M.Mathematical modeling for the silnuhaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors[J].Journal of Merebrane Science,2009,342(1/2):269-278.
[68]MARZOUK S A M,AL-MARZOUQI M H,TERAMOTO M,et al.Simuhaneous removal of CO2 and H2S from pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors[J].Separation and Purification Technology,2012,86:88-97.
[69]HEDAYAT M,SOLTANIEH M,MOUSAVI S A.Simuhaneous separation of H2S and CO2 from natural gas by hollow fiber membrane contactor using mixture of alkano Membrane Science,2011,377(1/2):191-197.
[70]RAJABZADEN S,YOSHIMOTO S,TERAMOTO M.et al.Effect of membrane structure on gas absorption performance and long-term stability of membrane contactors[J].Separation and Purification Technology,2013,108:65-73.
[71]MARZOUK S A M,AL MARZOUQI M H.EL-NAAS M H,et al.Removal of carbon dioxide from pressurized CO2 CH4 gas mixture using hollow fiber membrane contactors[J].Journal of Membrane Science,2010,351(1/2):21-27
[72]KHAISRI S,DEMONTIGNY D.TONTIWACH WUTHIKUL P,et al.CO2 stripping from monoethanolamine using a membrane contactor[J].Journal of Membrane Science,2011,376(1/2):110-118.
[73]KHAISRI S,DEMONTIGNY D.TONTIWACHWUTHIKUL P,et al.Membrane contacting process for CO2 desorption[J].Energy Procedia,2011,4:688-692.
[74]KHAISRI S,DEMONTIGNY D.TONTIWACHWUTHIKUL P,et al.A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes[J].Journal of Membrane Science,2010,347(1/2):228-239.
[75]孫承貴,曹義嗚,介興明,等.中空纖維致密膜基吸收CO2傳質(zhì)機(jī)理分析[J].高?;瘜W(xué)工程學(xué)報(bào),2007,21(4):556-562.
SUN Chenggui,CAO Yiming,JIE Xingming,et al.Mass transfcr mechanism of CO2 absorption thr。ugh a non-porous hollow fiber contactor[J].Chemical Journal of Cbinese Universities,2007,21(4):556-562.
[76]孫承貴.中空纖維致密膜基吸收脫除CO2研究[D].大連:中國科學(xué)院,2005.
SUN Chenggui.Study on non porous hollow liber contactors for CO2 removal[D].Dalian:Chinese Academv of Sciences,2005.
[77]閆云飛,張力,張智恩,等.一種中空纖維疏水膜高效脫除煙氣中CO2的方法:中國,201310029021[P].2013-05-29
YAN Yunfei,ZHANG Li,ZHANG Zhi¢en,et al.A method of hydrophobic hollow fiber membrane high-efficient removal of CO2 from the flue gas:China,201310029021[P].2013-05-29.
本文作者:閆云飛 張智恩 張力 鞠順祥
作者單位:“低品位能源利用技術(shù)及系統(tǒng)”教育部重點(diǎn)試驗(yàn)室·重慶大學(xué)
重慶大學(xué)動力工程學(xué)院
您可以選擇一種方式贊助本站
支付寶轉(zhuǎn)賬贊助
微信轉(zhuǎn)賬贊助