摘 要:CNG站脫水裝置是CNG加氣站的主要耗能單元之一,其脫水效果的好壞直接影響到CNG的氣質(zhì)。針對(duì)目前CNG站脫水裝置再生工藝不合理、再生時(shí)間長(zhǎng)、再生能耗高等問(wèn)題,結(jié)合脫水裝置實(shí)際運(yùn)行情況,開(kāi)展了節(jié)能技術(shù)研究,提出了利用再生氣余熱的節(jié)能技術(shù)。其節(jié)能核心在于通過(guò)能量(熱量和冷量)的互補(bǔ)利用,提高加熱爐的進(jìn)口溫度以縮短加熱時(shí)間,降低加熱爐電耗量,同時(shí)降低冷凝分離器的進(jìn)口溫度以改善CNG的分離效果,實(shí)現(xiàn)了CNG站脫水裝置節(jié)能降耗與優(yōu)化再生效果的雙重目標(biāo)。在不改變其他設(shè)備及參數(shù)的條件下,完成了節(jié)能技術(shù)改造前后能耗對(duì)比測(cè)試。結(jié)果表明:CNG站脫水裝置的加熱時(shí)間縮短了27.3%,再生氣用量節(jié)約了l8.4%,加熱爐電耗量降低了28.6%,節(jié)能效果明顯。
關(guān)鍵詞:CNG 加氣站 脫水 再生 加熱爐 節(jié)能 余熱利用
An energy-saving technology for a dehydrating device at a CNG station
Abstract:A dehydrating plant is one of the main power consumption units at a CNG filling station and its dehydrating result will directly influence the CNG quality.In view of the unreasonable regeneration process with time and energy highly consumed in the current dehyd ratlng plant at a CNG station,this paper aims to improve the operation efficiency through performing the studies of energy-saving technologles. Thus,an energy-saving technology was developed by USe of the residual heat of the regenerated gas,the core ot which is to utilize energy sources(cold and heat)synthetically and efficiently.The inlet temperature of a heating furnace was raised to shorten the heating time and reduce the electric power cons umption.Meanwhile,the inlet temperature of a condensing separator was reduced to improve the separation resuh.In this way,the dual goals were achieved:energy saving&consumption reducmg and the optimized regene ratlon result for a dehydrating plant at a CNG filling station.Under the condition of the same equipments and parameters,a comparative testing was made before and after the energy-saving technology was adopted in a case study.With this energy-saving technology,the heating time was shortened by 27.3%,the regenerated gas volume was saved by l8.4%,and the electric power of a heating furnace was reduced by 28.6%.
Key words:CNG filling station,dehydration,regeneration,heating furnace,encrgy saving,residual-heat utilization
CNG加氣站脫水裝置的脫水效果對(duì)加氣站的安全運(yùn)行至關(guān)重要[1]。車(chē)用壓縮天然氣增壓后的水露點(diǎn)應(yīng)符合GB l8047的規(guī)定,CNG加氣站脫水裝置宜采用吸附法脫水[2-4]。為保證CNG加氣站連續(xù)運(yùn)行,至少需要2個(gè)脫水塔,一個(gè)塔進(jìn)行脫水操作,另一個(gè)塔進(jìn)行吸附再生和冷卻,然后切換操作。按照脫水裝置在CNG加氣站工藝流程中的位置分為低壓脫水、中壓脫水、高壓脫水3種方式[5-7]。
脫水裝置是CNG加氣站的主要耗能單元,其能耗主要體現(xiàn)在加熱爐電耗、再生氣用量上。目前脫水裝置存在再生過(guò)程能耗較大、再生氣用量大、再生時(shí)間和溫度不合理、分子篩再生不徹底、再生頻率較高、操作次數(shù)多等問(wèn)題[8-14]。為此,結(jié)合CNG站脫水裝置實(shí)際工藝流程,提出了再生氣余熱利用節(jié)能技術(shù),使能量(熱量和冷量)互補(bǔ)利用,實(shí)現(xiàn)脫水裝置節(jié)能降耗與優(yōu)化再生效果的雙重目的[15-16]。試驗(yàn)數(shù)據(jù)表明:在不改變其他設(shè)備及參數(shù)的條件下,節(jié)能改造后再生時(shí)間縮短了3h,市能比為27.3%;單次再生氣用量減少了60.7m3,節(jié)能比為l8.4%;加熱爐的電耗降低了28.6%。
1 脫水裝置工藝流程
兩塔脫水裝置運(yùn)行時(shí),保持一個(gè)塔處于吸附狀態(tài),另一個(gè)塔處于再生狀態(tài)。其單塔循環(huán)過(guò)程為:吸附®卸壓®加熱再生®冷吹®充壓®吸附[17]。脫水裝置工藝流程包括脫水操作和再生操作兩部分,其高壓脫水工藝流程如圖1所示?,F(xiàn)假設(shè)塔A進(jìn)行脫水操作,塔B進(jìn)行再生操作,對(duì)其工藝流程進(jìn)行簡(jiǎn)述[18-19]。
脫水操作流程:被壓縮后的高壓天然氣經(jīng)前置過(guò)濾分離器分離可能存在的游離水、油和雜質(zhì),然后經(jīng)A高進(jìn)閥從塔A頂部進(jìn)入,與塔內(nèi)分子篩充分接觸,分子篩吸附高壓天然氣所含的水和部分烴得到干燥的天然氣,干燥后的天然氣從塔A底部排出,經(jīng)A高出閥進(jìn)入后置過(guò)濾分離器分離后進(jìn)入高壓儲(chǔ)氣容器。后置過(guò)濾分離器主要濾掉氣流中攜帶的分子篩粉末,以免堵塞后續(xù)設(shè)備。
再生操作流程:再生氣(儲(chǔ)氣容器內(nèi)的干氣)經(jīng)調(diào)壓柜節(jié)流降壓后進(jìn)入加熱爐加熱,溫度上升至210℃左右,經(jīng)B熱進(jìn)閥從塔B底部進(jìn)入,與分子篩接觸傳熱,隨著分子篩溫度升高,分子篩吸附的水分及部分烴被再生氣帶走,逐步完成分子篩的再生。當(dāng)脫水塔頂部溫控儀溫度顯示為125℃左右時(shí),標(biāo)志加熱再生階段完成。隨后進(jìn)入脫水塔的冷吹再生階段,關(guān)閉加熱爐電源,繼續(xù)通干氣對(duì)分子篩進(jìn)行冷吹降溫,當(dāng)脫水塔頂部溫控儀溫度顯示為125℃左右時(shí),標(biāo)志加熱再生階段完成。隨后進(jìn)入脫水塔的冷吹再生階段,關(guān)閉加熱爐電源,繼續(xù)通干氣對(duì)分子篩進(jìn)行冷吹降溫,當(dāng)脫水塔頂部溫度降至40℃以下時(shí),分子篩恢復(fù)吸附能力,停止冷吹,脫水塔再生完成。再生氣經(jīng)脫水塔頂部排出,經(jīng)B熱出閥進(jìn)入冷凝分離器冷卻分離后進(jìn)入回收罐。
2 再生氣余熱利用節(jié)能技術(shù)
由脫水裝置工藝流程知,再生氣從塔A頂部排出時(shí)攜帶了大量的熱量直接進(jìn)入冷凝分離器,存在如下問(wèn)題:①冷凝分離器進(jìn)口溫度較高,不利于氣液分離,影響分離效果;②再生氣的熱量大量浪費(fèi),沒(méi)能得到再次利用,同時(shí)也提高了回收罐的溫度。再生氣調(diào)壓后存在節(jié)流降壓積霜現(xiàn)象(圖2),導(dǎo)致加熱爐的進(jìn)氣溫度很低,而脫水塔頂部出口溫度較高,致使冷凝分離器進(jìn)口溫度較高,不利于CNG分離,由此提出了再生氣余熱利用節(jié)能技術(shù),即利用再生氣的余熱預(yù)熱調(diào)壓后的低溫再生氣,同時(shí)利用調(diào)壓閥節(jié)流降溫后的冷量冷卻脫水后的高溫再生氣,兩者的能量(熱量與冷量)互補(bǔ)利用,實(shí)現(xiàn)節(jié)能降耗的目的。節(jié)能技術(shù)有如下效果:①提高再生氣進(jìn)入加熱爐的進(jìn)氣溫度,降低加熱爐的電耗;②減少再生氣加熱時(shí)間,減少再生氣的用量;③降低冷凝分離器進(jìn)口溫度,提高分離效果。
再生氣余熱利用節(jié)能技術(shù)的工藝流程如圖3所示,增加了再生氣換熱器及其相關(guān)轉(zhuǎn)換流程?,F(xiàn)仍然假定塔A進(jìn)行脫水操作,塔B進(jìn)行再生操作,對(duì)其工藝流程進(jìn)行簡(jiǎn)述。脫水操作流程保持不變,再生操作流程略有變化,換熱器與加熱爐處于同步狀態(tài)(圖4)。加熱再生時(shí),打開(kāi)閥1,關(guān)閉閥2,調(diào)壓后的低溫再生氣進(jìn)入新增加的換熱器殼程,塔A出口的高溫再生氣進(jìn)入換熱器管程,實(shí)現(xiàn)換熱,從而提高加熱爐再生氣的進(jìn)口溫度、降低冷凝分離器的進(jìn)口溫度。冷吹再生時(shí),打開(kāi)閥2,關(guān)閉閥l,調(diào)壓后的低溫再生氣經(jīng)過(guò)加熱爐旁通(避免換熱器把熱量再次帶入塔B),直接進(jìn)入塔B冷吹分子篩,使分子篩快速冷卻,完成分子篩再生。
3 節(jié)能技術(shù)效果分析
為分析節(jié)能技術(shù)的可行性和節(jié)能效果,按圖3的工藝流程,結(jié)合脫水裝置的工藝流程,完成了脫水裝置的節(jié)能技術(shù)改造,脫水裝置節(jié)能改造前后現(xiàn)場(chǎng)見(jiàn)圖5。為完成節(jié)能技術(shù)的效果分析,分別統(tǒng)計(jì)了節(jié)能技術(shù)改造前后,在不改變其他設(shè)備及參數(shù)的條件下,完成一次分子篩再生所需要的氣量和電耗量。改造前后脫水裝置再生操作時(shí)的試驗(yàn)數(shù)據(jù)(加熱再生時(shí)間、電耗量、再生氣用量)見(jiàn)表l,改造前后加熱爐進(jìn)口管壁溫度變化曲線、加熱爐單位時(shí)間電耗量變化趨勢(shì)見(jiàn)圖6、7。
分析上述圖表數(shù)據(jù)可以得出:①改造后加熱時(shí)間減少了27.3%,再生氣用量減少了18.4%,加熱爐電耗量減少了28.6%;②由于再生氣余熱是一個(gè)自身循環(huán)預(yù)熱的過(guò)程,大約lh之后,換熱爐才開(kāi)始對(duì)再生氣預(yù)熱,隨后加熱爐進(jìn)口溫度緩慢升高,最后管壁溫度穩(wěn)定在47℃左右;③再生氣余熱利用存在滯后,隨著換熱器逐漸換熱,加熱爐單位時(shí)間電耗量相比改造前電耗減小,充分說(shuō)明再生氣余熱得到利用,達(dá)到了節(jié)能運(yùn)行的目的。
4 結(jié)論
1)應(yīng)用再生氣余熱利用的節(jié)能技術(shù)提高了加熱爐的進(jìn)氣溫度,減少了加熱時(shí)間和電耗量,降低了脫水裝置的能耗,技術(shù)上可行。
2)利用再生氣節(jié)流降壓的冷量冷卻脫水塔出口的再生氣,降低了冷凝分離器進(jìn)口溫度,改善了CNG分離效果。
3)能量互補(bǔ)利用的模式可用于類(lèi)似的工藝流程,實(shí)現(xiàn)節(jié)能降耗、經(jīng)濟(jì)運(yùn)行的目的。
參考文獻(xiàn)
[l]宋玉紅,王少杰,土川紅,等.加氣母站前置脫水裝置運(yùn)行需注意的問(wèn)題[J].油氣儲(chǔ)運(yùn),2012,31(1):75-77.
SONG Yuhong,WANG Shaojie,WANG Chnanhong,et al.Problems in the operation of pre dewater in CNG filling station[J].Oil&Gas Storage and Transportation,2012,31(1):75-77.
[2]國(guó)家發(fā)展和改革委員會(huì).SY/T 0076—2008.天然氣脫水設(shè)計(jì)規(guī)范[S].北京:石油工業(yè)出版社,2008.
National Development and Reform Commission.SY/T 0076—2008 Code for design of natural gas dehydration[S].Beijing:Petroleum Industry Press,2008.
[3]張沛.CNG汽車(chē)是天然氣利用的重要發(fā)展途徑[J].石油與天然氣化工,2008,37(1):23-27.
ZHANG Pei.Developing way of using natural gas by CNG vehicle[J].Chemical Engineering of Oil&Gas,2008,37(1):23-27.
[4]李明,魏志強(qiáng),張磊,等.一種特殊氣質(zhì)分子篩脫水方案設(shè)計(jì)[J].石油與天然氣化工,2011,40(2):141-145.
LI Ming,WEI Zhiqiang,ZHANG gei,et al.Molecular sieve dehydration scheme of particular natural gas composition[J].Chemical Engineering of Oil&.Gas,2011,40(2):141-145.
[5]鄭大振.LNG工廠的天然氣凈化工藝及其新發(fā)展[J].天然氣工業(yè),l994,14(4):67-70.
ZHENG Dazhen.Natural gas purifying process and latest development of LNG factory[J].Natural Gas Industry,1994,l4(4):67-70.
[6]胡曉敏,陸永康,曾亮泉.分子篩脫水工藝簡(jiǎn)述[J].天然氣與石油,2008,26(1):39-41.
HU Xiaomin,LU Yongkang,ZENG Liangquan.Description of molecular sieve dehydration process[J].Natural Gas and Oil,2008,26(1):39-41.
[7]王協(xié)琴.車(chē)用壓縮天然氣脫水[J].天然氣工業(yè),1999,19(6):75-78.
WANG Xieqin.Dehydration of compressed natural gas used as vehicle fuel[J].Natural Gas Industry,1999,19(6):75-78.
[8]田家林.CNG加氣站節(jié)能降耗技術(shù)研究[D].成都:西南石油大學(xué),2009.
TIAN Jialin.Energy conversation research of CNG fueling station[D].Chengdu:Southwest Petroleum University,2009.
[9]王樂(lè),賈立民,付孟貴,等.天然氣脫水系統(tǒng)的技術(shù)改造[J].天然氣工業(yè),2005,25(8):123-124.
WANG Le,JIA kimin,FU Menggui,et al.Technical reform of gas dehydration system[J].Natural Gas Industry,2005,25(8):123-124.
[10]陸劍波,張余,楊慧,等.CNG站能效對(duì)標(biāo)指標(biāo)體系的建立[J].石油與天然氣化工,2012,41(6):616-618.
LU Jianbo,ZHANG Yu,YANG Hui,et al.Foundation of energy benchmarking system for CNG station[J].Chemical Engineering of Oil&Gas,2012,41(6):616-618.
[11]阮中偉,蘭書(shū)彬.大豐市CNG站優(yōu)化操作技術(shù)分析[J].石油與天然氣化工,2005,34(6):459-461.
RUAN Zhongwei,LAN Shubin.The technical analysis of the operation optimizing of CNG station in Dafeng city[J].Chemical Engineering of Oil&Gas,2005,34(6):459-461.
[12]李明,魏志強(qiáng),張磊,等.分子篩脫水裝置節(jié)能探討[J].石油與天然氣化工,2012,41(2):l56-160.
LI Ming,WEI Zhiqiang,ZHANG Lei,et al.Discussion on energy saving of molecular sieve dehydration unit[J].Chemical Engineering of Oil&Gas,2012,41(2):156-160.
[13]王正才,劉生麗,高金橋,等.天然氣深冷處理裝置分子篩循環(huán)換熱節(jié)能脫水工藝研究[J].石油與天然氣化工,2006,35(4):264-266.
WAGN Zhengcai,LIU Shengli,GAO Jinqiao,et al.Research on the dehydration process of molecular sieve with circulating heat exchange technology for energy conservation in cryogenic separation unit of natural gas[J].Chcmical Engineering of Oil&Gas,2006,35(4):264-266.
[14]胡世鵬,吳小林,馬利敏,等.基于BP神經(jīng)網(wǎng)絡(luò)和遺傳算法的天然氣脫水裝置能耗優(yōu)化[J].天然氣工業(yè),2012,32(11):89-94.
HU Shipeng,WU Xiaolin,MA Limin,et al.BP and GAbased energy consumption optimization of gas dehydration plants[J].Natural Gas Industry,2012,32(11):89-94.
[15]梁政,李雙雙,田家林,等.一種天然氣吸附劑再生節(jié)能工藝及裝置:中國(guó),201310006846.1[P].2013-01-09.
LIANG Zheng,LI Shuangshuang,TIAN J ialin,et al.One regeneration energy saving technology and device of natural gas adsorbent:CN,201310006846.1[P].2013-01-09.
[16]梁政,李雙雙,田家林,等.CNG壓縮機(jī)節(jié)能技術(shù)與試驗(yàn)分析[J].天然氣工業(yè),2013,33(2):95-97.
LIANG Zheng,LI Shuangshuang,TIAN Jialin,et al.An experimental study of technical measures for energy saying of CNG Compressors[J].Natural Gas Industry,2013,33(2):95-97.
[17]寧成千,岑康,嚴(yán)宇,等.CNG加氣站高、低壓脫水工藝技術(shù)經(jīng)濟(jì)分析[J].西南石油大學(xué)學(xué)報(bào),2007,29(增刊2):150-l52.
NING Chengqian,CEN Kang,YAN Yu,et al.Technical and economic analysis of low and high pressure dehydration technique for CNG station[J].Journal of Southwest Petroleum University,2007,29(S2):150-152.
[18]周三平,樊玉光,陳兵.橇裝式伴生氣吸附脫水裝置及吸附脫水工藝[J].石油機(jī)械,2007,35(7):59-61.
ZHOU Sanping,FAN Yuguang,CHEN Bing.Skidmounted dehydration unit and process of associated gas[J].China Petroleum Machinery,2007,35(7):59-61.
[19]何策,張曉東.國(guó)內(nèi)外天然氣脫水設(shè)備技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J].石油機(jī)械,2008,36(1):69-72.
HE Ce,ZHANG Xiaodong.The present situation and development trend on natural gas dehydration equipment at home and abroad[J].China Petroleum Machinery,2008,36(1):69-72.
本文作者:梁政 李雙雙 田家林 朱小華 張力文
作者單位:石油天然氣裝備教育部重點(diǎn)實(shí)驗(yàn)室·西南石油大學(xué)
中國(guó)石油西南油氣出公司銷(xiāo)售分公司
中國(guó)石油寶雞石油機(jī)械有限責(zé)任公司
您可以選擇一種方式贊助本站
支付寶轉(zhuǎn)賬贊助
微信轉(zhuǎn)賬贊助