摘 要:為了研究多煤層發(fā)育地區(qū)各含氣系統(tǒng)排采次序及壓力控制下的流體效應(yīng),以指導(dǎo)煤層氣井排采制度設(shè)計,從貴州省織納煤田選擇了1口煤層氣參數(shù)+試驗井,在劃分多層疊置含氣系統(tǒng)的基礎(chǔ)上,分析了各含氣系統(tǒng)靜止液面壓力、儲層壓力、臨界解吸壓力特征,設(shè)計了各含氣系統(tǒng)遞進排采次序及排呆壓力控制方案;模擬了單含氣系統(tǒng)分排、多含氣系統(tǒng)合排及多含氣系統(tǒng)遞進排采各階段的流體效應(yīng)。模擬結(jié)果表明:①單獨排采各含氣系統(tǒng)時,產(chǎn)氣量低,排呆時間短,成本高;②多含氣系統(tǒng)遞進排采平均氣產(chǎn)能和累計產(chǎn)能高、穩(wěn)產(chǎn)期時間長,但多含氣系統(tǒng)在合層排采時,由于各系統(tǒng)壓力不同,系統(tǒng)間存在相互干擾,并非所有含氣系統(tǒng)都有產(chǎn)能貢獻;③多層疊置獨立含煤層氣系統(tǒng)可根據(jù)各系統(tǒng)內(nèi)煤儲層壓力、臨界解吸壓力和產(chǎn)氣壓力來設(shè)計遞進排采次序,先排采臨界解吸壓力和產(chǎn)氣壓力高的含氣系統(tǒng),當(dāng)壓力降到另一含氣系統(tǒng)的臨界解吸壓力和產(chǎn)氣壓力時,再進行兩個含氣系統(tǒng)合排,依此遞進排采所有含煤層氣系統(tǒng)。
關(guān)鍵詞:中國南方 煤層氣 多煤層 遞進排采 流體效應(yīng) 排采壓力控制 多層疊置含氣系統(tǒng) 合排
Pressure control and fluid effect of progressive drainage of multiple superposed CBM systems
Abstract:In order to understand the drainage order and pressure-controlled fluid effect of each CBM(coalhed methane)system in the areas with multiple coalbeds,this paper studied a parametric test well in the Zhina coalfield in Guizhou province of China.On the basis of the division of multiple superimposed CBM systems,we analyzed static liquid surface pressure,reservoir pressure and critical desorption pressure,deslgned progressive drainage sequence and pressure control scheme for each CBM system,and modeled fluid effects in each drainage stage for separate drainage of each CBM system,commingled drainage and progressive drainage of muhiple CBM systems.The foilowings simLllation results were obtained.For the separate drainage of each CBM system,gas production is low,drainage period is short and cost is high.In contrast,for the progressive drainage of multiple CBM systems,both the average and accumulative gas production capacity are large and stable production period is long.However,not all the CBM systems contribute to production due to the interference among CBM svstems wilh different pressures,The progressive drainage sequence can be designed according to combed pressure,critical desorption Pressure and production pressure.The CBM system with the highest critical desorption pressure and production pressure will be put into drainage first.Whcn its pressures are lowered to be equal to the Values of another system,the two systems will be put into commingled production.The proccss will continue till all systems are put into production.
Key words:South China,CBM,multiple coalbed system,progressive drainage,fluid effect,drainage pressu re control,supcrimposed CBM system,commingled production
我國目前煤層氣開發(fā)活動集中在沁水盆地、鄂爾多斯盆地東緣及東北阜新盆地等少數(shù)地區(qū),煤層氣開發(fā)后備基地嚴(yán)重匱乏[1]?,F(xiàn)開采對象大多為單一煤層(組),資源量有限,致誕煤層氣井開采時間短,一些直井生產(chǎn)不到8a氣產(chǎn)量就幾乎衰竭了,第一口煤層氣多分支水平井——DNP02井,平均產(chǎn)氣量近2×104m3/d,也只排采4a就枯竭了。而我國較早的潘莊井組,采用多煤層排采(3、9、l5號煤合層排采),一些井已排采超過10a,現(xiàn)日產(chǎn)氣量仍維持在1000m3左右[2-5]。我國南方多煤層(或煤層群)地區(qū)雖然單煤層厚度不大,但多煤層的發(fā)育使得煤層總厚度較大,煤層氣資源豐度遠(yuǎn)遠(yuǎn)高于全國平均水平[6-8]。前期對多煤層進行的是合層排采,或僅進行單層排采。由于不同煤層,其儲層壓力、臨界解吸壓力不同,合層排采時,不同壓力儲層會產(chǎn)生相互干擾,分層排采資源、產(chǎn)能有限,對煤層群遞進排采缺乏系統(tǒng)研究。
1 多層疊置獨立含氣系統(tǒng)
秦勇等分析了貴州織納煤田比德 三塘礦區(qū)水公河向斜不同煤層的含氣性和視儲層壓力(由煤田抽水實驗水頭高度換算)在層位上的分布規(guī)律,發(fā)現(xiàn)上二疊統(tǒng)龍?zhí)督M煤層群在垂向上存在3個獨立的含氣系統(tǒng),即1~7號煤層、8~21號煤層、22~35號煤層流體壓力系統(tǒng),首次提出了“多層疊置獨立含煤層氣系統(tǒng)”的學(xué)術(shù)觀點[9]。楊兆彪進一步研究了比德一三塘礦區(qū)單井、連井沉積剖面和巖相占地理,認(rèn)為層序組合是發(fā)育“多層疊置獨立含氣系統(tǒng)”的關(guān)鍵因素[10-11]。
多層疊置獨立含煤層氣系統(tǒng)在三角洲—潮坪—漏湖相含煤地層巾較為普遍,其本質(zhì)在于層序地層格架構(gòu)成了煤層群間獨立成藏的物性基礎(chǔ),尤其是準(zhǔn)層序界而附近阻水阻氣低滲透巖層的空間發(fā)育起主要控制作用。處于三角洲—潮坪渦湖沉積體系的“煤層群”之間發(fā)育了細(xì)粒碎屑巖致密巖層,具有高度隔水阻氣作用,使垂向上不同巖層(組合)之間水力相互封閉,不同“煤層群”之間氣—水交換作用極其微弱,垂向上形成了多個獨立含煤層氣系統(tǒng)[11-13]。
處于織納煤田比德三塘礦區(qū)的煤層氣l井,其各可采煤層(2、6、7、16、20、23、27號煤層)實測含氣量與含氣梯度隨層位降低均呈波動式變化(表1,圖l)。
依據(jù)上述多層疊置獨立含煤層氣系統(tǒng)理論,將2~7號煤層、l6~20號煤層、23~27號煤層分別劃分為3套相對獨立的含煤層氣系統(tǒng),含氣系統(tǒng)的獨立分段大致與龍?zhí)督M上、中、下3段對應(yīng),表明煤層氣系統(tǒng)受控于含煤地層層序地層格架。同一套含煤層氣系統(tǒng)中,含氣量和含氣量梯度也存在較大差異,且下部煤層含氣量低于上部煤層含氣量,表明各煤層含氣量受控于同一層序內(nèi)的沉積環(huán)境[10-11]。
2 單排與合排流體效應(yīng)
根據(jù)地質(zhì)參數(shù)、儲層參數(shù)、試井參數(shù),采用常規(guī)的煤儲層數(shù)值模擬方法[14-15],利用COMET3數(shù)值模擬軟件對煤層氣l井排采流體效應(yīng)進行了預(yù)測。
2.1 單系統(tǒng)排采流體效應(yīng)
單獨排采①號系統(tǒng),產(chǎn)氣量介于306~905m3/d,平均為431m3/d(圖2),15a排采的累計產(chǎn)氣量為2.13×106m3(表2);單獨排采②號系統(tǒng),產(chǎn)氣量介于502~2952m3/d,平均為lll7m3/d,15a排采的累計產(chǎn)氣量為5.53×106m3;單獨排采③號系統(tǒng),產(chǎn)氣量介于413~l486m3/d,平均為721m3/d。15a排采的累計產(chǎn)氣量為3.57×106m3。
2.2 多系統(tǒng)合層排采流體效應(yīng)
①號系統(tǒng)和②號系統(tǒng)合排,最高產(chǎn)氣量約為2000m3/d,平均產(chǎn)氣量為950m3/d左右,1000m3/d產(chǎn)量可持續(xù)2800d左右(圖3),15a累計產(chǎn)量為4.68×106m3;②號系統(tǒng)和③號系統(tǒng)合排,最高產(chǎn)氣量也在2000m3/d左右,平均產(chǎn)氣量為1100m3/d左右,1500m3/d日產(chǎn)量持續(xù)2000d左右,15a累計產(chǎn)量為5.39×106m3;①、②、③這3個系統(tǒng)合排,最高產(chǎn)氣量達(dá)到4300m3/d,平均產(chǎn)氣量為2100m3/d左右,2000m3/d產(chǎn)量可持續(xù)3300d左右,l5a累計產(chǎn)量為10.45×106m3。實際排采時由于各系統(tǒng)壓力不同,系統(tǒng)間相互干擾,并非所有含氣系統(tǒng)都有產(chǎn)能貢獻。
3 多系統(tǒng)遞進排采壓力控制及流體效應(yīng)
由于各含氣系統(tǒng)壓力不同,合層排采會產(chǎn)生層間干擾。煤層氣l井鉆井、固井結(jié)束后,由靜止液而高度計算得出①、②、③號含氣系統(tǒng)的液而壓力分別為2.55、3.86、4.22MPa(圖4),分別比各系統(tǒng)的儲層壓力高0.6、0.91、1.18MPa,若井孔處理不干凈的話,對煤儲層有一定程度的污染。基于實測含氣量、蘭格繆爾參數(shù)計算①、②、③號含氣系統(tǒng)的臨界解吸壓力分別為1.43、2.36、1.68MPa,產(chǎn)氣壓力分別為l.72、2.83、2.02MPa(基于山西沁水盆地南部煤層氣井排采實踐,產(chǎn)氣壓力約為臨界解吸壓力的1.2倍[16-19]。依據(jù)煤層氣l井各系統(tǒng)內(nèi)煤儲層壓力、臨界解吸壓力和產(chǎn)氣壓力,對3個含氣系統(tǒng)設(shè)計了遞進開發(fā)次序。
第一階段,對儲層壓力高的②號系統(tǒng)進行優(yōu)先壓裂排采,單獨排采②號系統(tǒng),排采1132d(約3年零5個月,圖5)后,儲層壓力降低至2.02MPa(③號系統(tǒng)產(chǎn)氣壓力);第二階段,②號與③號系統(tǒng)聯(lián)合排采,排水降壓650d(約2a),儲層壓力降低至l.72MPa(①號系統(tǒng)儲層的產(chǎn)氣壓力),①號系統(tǒng)煤層氣開始解吸;第三階段,同時排采②+③+①這3個系統(tǒng),繼續(xù)排水降壓3168d(約9年零7個月),至此,3個系統(tǒng)已累計排采15a,儲層壓力降至約0.7MPa。
按上述遞進排采方案,煤層氣1井l5a的產(chǎn)能預(yù)測結(jié)果表明產(chǎn)氣量介于l058~3666m3/d,平均為2267m3/d,15a排采的累計產(chǎn)氣量為11.36×106m3(表2)。第一階段,排采約30 d出現(xiàn)了最大日產(chǎn)氣量3424m3;排采l50d之后曲線到達(dá)了穩(wěn)定期,在排采650d時出現(xiàn)穩(wěn)定期的最大日產(chǎn)氣量,為2623m3,之后(圖5),日產(chǎn)氣量持續(xù)下降,但仍然較高,在②號系統(tǒng)單獨排采結(jié)束時日產(chǎn)氣量約為2218m3。第二階段,曲線變化與第一階段相似,由于③號系統(tǒng)的加入,日產(chǎn)氣量整體高于第一階段,此階段③號系統(tǒng)產(chǎn)氣量出現(xiàn)穩(wěn)定期。第三階段,①號系統(tǒng)開始降壓解吸,出現(xiàn)約1500d的穩(wěn)定期,之后日產(chǎn)氣量緩慢減低至約600m3,此階段中②號、③號系統(tǒng)日產(chǎn)氣量不斷下降,總體日產(chǎn)量逐漸降低(圖5)。
4 結(jié)論
1)多煤層發(fā)育地區(qū)各層序組之間發(fā)育低滲透巖層,往往存在多層疊置獨立含煤層氣系統(tǒng)。各含氣系統(tǒng)單獨排采產(chǎn)氣量低,排采時間短,成本高;而多含氣系統(tǒng)遞進排采平均氣產(chǎn)能和累計氣產(chǎn)能高、穩(wěn)產(chǎn)期時間長。但多含氣系統(tǒng)在合層排采時,由于各系統(tǒng)壓力不同,系統(tǒng)間存在相互干擾,并非所有含氣系統(tǒng)都有產(chǎn)能貢獻。
2)多層疊置獨立含煤層氣系統(tǒng)可根據(jù)各系統(tǒng)內(nèi)煤儲層壓力、臨界解吸壓力和產(chǎn)氣壓力設(shè)計遞進排采次序,先排采臨界解吸壓力和產(chǎn)氣壓力高的含氣系統(tǒng),當(dāng)壓力降到另一含氣系統(tǒng)的臨界解吸壓力和產(chǎn)氣壓力時,進行兩含氣系統(tǒng)合排。依此遞進排采所有含煤層氣系統(tǒng)。
參考文獻
[1]秦勇.中國煤層氣產(chǎn)業(yè)化面臨的形勢與挑戰(zhàn)(T):當(dāng)前所處的發(fā)展階段[J].天然氣工業(yè),2006,26(1):4-7.
QIN Yong.Situations and challenges for coalbed methane industrialization in China(I):Current stage of growing period[J].Natural Gas Industry,2006,26(1):4-7.
[2]傅雪海,邢雪,劉愛華,等.華北地區(qū)各類煤儲層孔隙、吸附特征及試井成果分析[J].天然氣工業(yè),2011,31(12):51-55.
FU Xuehai,XING Xue,LIU Aihua,et al.Analysis of porosity,adsorption characteristics and well test results of coal beds with different ranks in North China[J].Natural Gas Industry,2011,31(12):51-55.
[3]傅雪海,秦勇,韋熏韜,等.QNDNl井煤層氣排采的流體效應(yīng)分析[J].天然氣工業(yè),2010,30(6):48-51.
FU Xuehai,QIN Yong,WEI Chongtao,et al.An analysis of fluid effect during coalbed methane drainage in the well QNDNl[J].Natural Gas Industry,2010,30(6):48-51.
[4]孫晗森,馮三利,王國強,等.沁南潘河煤層氣山煤層氣商井增產(chǎn)改造技術(shù)[J].天然氣工業(yè),2011,3l(5):21-23.
SUN Hansen,FENG Sanli,WANG Guoqiang,el al.Stim ulation technology of vertical coalbed methane gas wells in the Panhe CBM Gas Field,southern Qinshui Basin[J].Natural Gas Industry,2011,31(5):21-23.
[5]葉建平,張健,王贊惟.沁南潘河煤層氣田生產(chǎn)特征及其控制因素[J].天然氣工業(yè),20ll,31(5):28-30.
YE Jianping,ZHANG Jian,WANG Zanwei.Production performance and its controlling factors in the Panhe CMB Gas Field,southern Qinshui Basin[J].Natural Gas Industry,2011,31(5):28-30.
[6]尹中山,徐錫惠,李茂竹。等.四川省煤層氣勘探開發(fā)工作進展與建議[J].天然氣工業(yè),2009,29(10):14-16.
YIN Zhongshan,XU Xihui,LI Maozhu,et al.Progress in and proposals for coalbed methane gas exploration and development in Sichuan Province[J].Natural Gas Industry,2009,29(10):l4-l6.
[7]楊兆彪,秦勇,高弟,等.煤層群條件下的煤層氣成藏特征[J].煤田地質(zhì)與勘探,20ll,39(5):22-26.
YANG Zhaobiao,QIN Yong,GAO Di,et al.Coalbed methane(CBM)reservoir forming character under conditions of coal seam groups[J].Coal Geology&Exploration.2011,39(5):22-26.
[8]曹艷,王秀芝.煤層氣地面開發(fā)項目經(jīng)濟評價[J].天然氣工業(yè),2011,31(11):l03-106.
CAO Yan,WANG Xiuzhi.Economic evaluarion of CBM gas development projects[J].Natural Gas Industrv,2011,31(11):103-106.
[9]秦勇,熊孟輝,易同生,等.論多層疊置獨立含煤層氣系統(tǒng)——以貴州織金 納雍煤田水公河向斜為例[J].地質(zhì)論評,2008,54(1):65-70.
QIN Yong,XIONG Menghui,YI Tongsheng,et al.On unattached multiple superposed coalbed methane system:A case of the Shuigonghe syncline,Zhij in Nayong coalfields,Guizhou[J].Geological Review,2008,54(1):65-70.
[10]楊兆彪,秦勇,高弟.黔西比德一三塘盆地煤層群含氣系統(tǒng)類型及其形成機理[J].中國礦業(yè)大學(xué)學(xué)報,20ll,40(2):215-220.
YANG Zhaobiao,QIN Yong,GAO Di.Type and geological controls of coalbed methane—bearing system under coal seam groups form Bide Santang Basin,Western Guizhou[J].Journal of China University of Mining&Technology.2011,40(2):215-220.
[11]楊兆彪,秦勇,高弟.黔西比德三塘盆地煤層群發(fā)育特征及其控氣特殊性[J].煤炭學(xué)報,2011,36(4):593-597.
YANG Zhaobiao,QIN Yong,GAO Di.Development character and particularity of controlling coalbed methane under coal seam groups from Bide Santang Basin,western Guizhou[J].Journal of China Coal Society,2011,36(4):593-597.
[12]王聰,吳財芳,歐正,等.黔西織納煤田少普礦區(qū)l6號煤層煤層氣富集的地質(zhì)控制因素[J].煤炭學(xué)報,2011,36(9):1486-l489.
WANG Cong,WU Caifang,OU Zheng,et al.Factors controlling the accumulation research of CBM enrichment of No.16 coal seam in the Shaopu coal mining of Zhina coalfield on the west of Guizhou Province[J].Journal of China Coal Society,2011,36(9):1486-1489.
[13]熊孟輝,秦勇,易同生.貴州晚二疊世含煤地層沉積格局及其構(gòu)造控制[J].中國礦業(yè)大學(xué)學(xué)報,2006,35(6):778-782.
XIONG Menghui,QIN Yong,YI Tongsheng.Sedimentary patterns and structural controls of Late Permian coal bearing strata in Guizhou,China[J].Journal of China University of Mining&Technology,2006,35(6):778-782.
[14]郭晨,秦勇,韋重韜.基于COMET3軟件的煤儲層數(shù)值模擬方法[J].中國煤炭地質(zhì),2011,23(1):l8-20.
GUO Chen,QIN Yong,WEI Chongtao.Method of coalbed methane reservoir numerical simulation based on COMET3[J].Coal Geology of China,2011,23(1):l8-20.
[15]曾雯婷,陳樹宏,徐鳳銀.韓城區(qū)塊煤層氣排采控制因素及改進措施[J].中國石油勘探,2012,17(2):79-84.
ZENG Wenting,CHEN Shuhong,XU Fengyin.Controlling factor analysis and suggestions on CBM drainage in Hancheng Block[J].China Petroleum Exploration,2012,17(2):79~84.
[16]吳建光,孫茂遠(yuǎn),馮三利,等.國家級煤層氣示范工程建設(shè)的啟示—沁水盆地南部煤層氣開發(fā)利用高技術(shù)產(chǎn)業(yè)化示范工程綜述[J].天然氣工業(yè),2011,3l(5):9-15.
WU Jianguang,SUN Maoyuan,FENG Sanli,et al.Good lessons from the state level demonstr£Ltion project of coa1bed methane development:An overview of such high tech and commercial project in the southern Qinshui Basin[J].Natural Gas Industry,2011,31(5):9-15.
[17]郭大立,貢玉軍,李曙光,等.煤層氣排采工藝技術(shù)研究和展望[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2012,34(2):91-98.
GUO Dali,GONG Yujun,LI Shuguang,et a1.Research and prospect about the CBM drainage technology[J].Journal of Southwest Petroleum University:Science&Technology Edition,2012,34(2):91-98.
[18]秦學(xué)成,段永剛,謝學(xué)恒,等.煤層氣井產(chǎn)氣量控制因素分析[J].西南石油大學(xué)學(xué)報:自然科學(xué)版,2012,34(2):99-104.
QIN Xuecheng,DUAN Yonggang,XIE Xueheng,et al.Controlling factor analysis of gas production rate in coal bed gas wells[J].Journal of Southwest Petroleum university:Science&Technology Edition,2012,34(2):99-104.
[19]陳振宏,王一兵,楊焦生,等.影響煤層氣井產(chǎn)量的關(guān)鍵因素分析——以沁水盆地南部樊莊區(qū)塊為例[J].石油學(xué)報。2009,30(3):409-413.
CHEN Zhenhong,WANG Yibing,YANG Jiaosheng,et al.Influencing factors on coal-bed methane production of single well:A case of Fanzhuang block in the south part of Qinstlui Basin[J].Acta Petrolei Sinica,2009,30(3):409-413.
本文作者:傅雪海 葛燕燕 梁文慶 李升
作者單位:新疆大學(xué)地質(zhì)與礦業(yè)工程學(xué)院
中國礦業(yè)大學(xué)資源與地球科學(xué)學(xué)院
煤層氣資源與成藏過程教育部重點實驗室·中國礦業(yè)大學(xué)
您可以選擇一種方式贊助本站
支付寶轉(zhuǎn)賬贊助
微信轉(zhuǎn)賬贊助