摘 要:準(zhǔn)確計算凝析氣井井底壓力是正確預(yù)測產(chǎn)能、合理制訂生產(chǎn)方案的關(guān)鍵,近年來凝析氣井壓力計算重點考慮黑油模型和組分模型的差異,而對優(yōu)選氣液兩相管流壓降模型的重要性卻認識不足。為此,采用Govier-Fogarasi公開發(fā)表的94口凝析氣井實驗數(shù)據(jù)對工程常用的無滑脫模型、Hagedorn&Brown、Orkiszewski、Gray、Mukherjee&Brill、Hasan&Kabir分別按黑油模型和組分模型預(yù)測井筒壓力。井底流壓和壓降梯度統(tǒng)計評價結(jié)果表明:兩相流模型的選擇對凝析氣井井筒壓力預(yù)測結(jié)果影響較大,而組分模型和黑油模型對部分兩相流模型在一定條件下對凝析氣井井筒壓力計算產(chǎn)生影響;推薦使用Gray模型+黑油模型和Hagedorn&Brown模型+組分模型來預(yù)測凝析氣井壓力剖面,并給出了無滑脫模型的適用條件(液氣比為0.5~5m3/104m3、產(chǎn)氣量大于5×104m3/d);最后指出,采用組分數(shù)據(jù)計算凝析氣井壓力剖面時,其數(shù)據(jù)選擇尤為重要,否則預(yù)測的誤差會增大。該研究成果對于凝析氣藏的高效開采具有重要的意義。
關(guān)鍵詞:凝析氣井 黑油模型 組分模型 氣液兩相流 井筒壓力 氣井壓力剖面 計算
Calculation of the wellbore pressure of a condensate gas well
Abstract:Calculating the downhole pressure of a condensate gas well accurately is the key to predicting the well¢s productivity and making a reasonable production plan.In recent years,the calculation of condensate gas well pressure only focuses on the differences between the black oil model and the compositional model,which ignores the significance of the gas-liquid pipe flow pressure drop model optimization.Thus,the experimental data from 94 condensate gas wells published by Govier Fogarasi was used to predict the wellbore pressure of a slip-free model and five gas-liquid flowing models(Hagedorn&Brown。Orkiszewski.Gray,Mukherjee&Brill,and Hasan&Kabir).Statistical evaluation of downhole flowing pressure and pressure dropping gradients indicated that the selection of gas-liquid flow model affects the prediction results of wellbore pressure in a condensate gas well.Moreover,the compositional model and black oil model have an effect on the calculation of wellbore pressure in a condensate gas well by partial gas-liquid flow models under certain conditions.So Gray model+black oil model and Hagedorn&.Brown model+compositional model are recommended in predicting the pressure profile of a condensate gas well,and the application conditions of the slip-free model are provided,such as the liquid gas ratio ranges from 0.5 to 5m3/104m3,the gas production rate up to 5×104m3/d.Finally,it was pointed out that the data for calculating the pressure profile should be first selected,if not。the prediction error would be greater than expected.These research findings are of great significance to the high efficient development of condensate gas reservoirs.
Keywords:condensate gas well,black oil model,compositional model,gas-liquid flow,wellbore pressure,gas well profile,calculation
準(zhǔn)確計算凝析氣井井底壓力是正確預(yù)測產(chǎn)能、合理制訂生產(chǎn)方案的關(guān)鍵。近年來國內(nèi)眾多學(xué)者[1-5]發(fā)表一系列文章,認為采用考慮相變化的組分模型在相同條件下計算的井底流壓明顯優(yōu)于黑油模型的預(yù)測結(jié)果。但文中只對比一種氣液多相流壓降模型或干氣井壓降模型,沒有考慮不同壓降模型對井底流壓計算產(chǎn)生的誤差,且僅給出了一個實例數(shù)據(jù),也不具有普遍性。筆者采用Govier—Fogarasi[6-8]公開發(fā)表的94口凝析氣井實驗數(shù)據(jù)(原著實驗井為l02口,扣除8口異常井),統(tǒng)計分析了流體物性模型(黑油模型和組分模型)和壓降模型對凝析氣井壓降計算的影響,推薦了凝析氣井井筒壓降計算方法。
1 井筒流體物性參數(shù)計算
流體物性參數(shù)計算””是凝析氣井井筒壓降計算的基礎(chǔ)。目前主要包括:①黑油模型。通過優(yōu)選經(jīng)驗公式計算溶解氣油比、天然氣偏差系數(shù)、天然氣體積系數(shù)等參數(shù)。②組分模型。通過狀態(tài)方程計算流體密度、黏度、界面張力等。筆者所采用的主要計算模型如表1所示。
2 井筒壓降預(yù)測統(tǒng)計分析
Govier-Fogarasi公開發(fā)表的94口凝析氣井(全部為直井)主要參數(shù)如表2所示。
采用工程常用的無滑脫模型、Hagcdorn&Brown[21]、Orkiszewski[22]、Gray[23]、Mukherjee&Brill[24]、Hasan&Kabir[25]對上述凝析氣井井底流壓進行了計算,其誤差統(tǒng)計結(jié)果如表3和圖1、2所示。
從統(tǒng)計誤差看,Gray模型各項最小(圖3),組分模型計算誤差略大于黑油模型。這是由于Gray模型的持液率計算過程中考慮了凝析油的反凝析現(xiàn)象,而組分模型再引入相態(tài)方程,使凝析現(xiàn)象疊加導(dǎo)致組分模型計算壓力較黑油模型對中性略差,誤差增加。因此推薦Gray模型按黑油模型計算凝析氣井井筒壓力。
無滑脫模型各項誤差次之(圖4),組分模型計算誤差大于黑油模型,是由于Govier-Fogarasi用的凝析氣井液氣比為0.05~14.4m3/104m3,從黑油模型對所選模型(無滑脫、Gray和Hagedorn&Brown沒有劃分流型)計算流型看:Mukherjee&Brill和Orkiszewski所有井井簡全部為段塞流,Hasan&Kabir預(yù)測結(jié)果除5井次出現(xiàn)分散泡狀流以外,其余井全為環(huán)狀流。段塞流為一段氣一段液,而環(huán)狀流主要靠氣相中攜帶的液滴和氣相與管壁液膜的摩擦帶液。因此兩種流型的滑脫損失均較小,可以采用無滑脫模型計算壓降。從分段液氣比看,液氣比小于0.5m3/104m3,誤差較大,這主要是由于氣液比極高,舉升壓降極小,13口壓降梯度平均為1.74MPa/1000m,導(dǎo)致井底流壓(13口井底流壓平均13.4MPa)較小,即使計算的井底流壓誤差較小因井底流壓測壓值較小而誤差較大。隨著液氣比的增加,各項誤差逐漸增加(圖5)?,F(xiàn)考慮各項誤差限為5%,采用無滑脫模型的液氣比范圍為0.5~5m3/104m3,并對該氣液比條件下的產(chǎn)氣量進行了分段統(tǒng)計如圖6所示,隨著產(chǎn)氣量的增加,各項誤差逐漸下降。因此無滑脫模型按黑油計算適用條件為:液氣比0.5~5m3/104m3,產(chǎn)氣量大于5×104m3/d,井底流壓誤差小于5%。
從所選的4個氣液兩相流模型(Hagedorn&Brown、Orkiszewski、Mukherjee&Brill、Hasan&Kabir)看,Hagedorn&Brown模型各項誤差最小,按組分模型計算的誤差明顯小于黑油模型。為了討論組分模型對流型、凝析油流量的影響,現(xiàn)選用誤差較小且考慮流型的Mukherjee&Brill進行統(tǒng)計分析。分別按組分模型和黑油模型計算的井筒最大產(chǎn)油量如圖7所示,組分模型計算的井筒最大產(chǎn)油量明顯較地面測試產(chǎn)油量大得多,而按黑油模型計算的產(chǎn)油量明顯偏小,說明隨井筒向上流動過程中,壓力溫度降低導(dǎo)致了凝析油的析出,與實際情況一致;井筒流量的改變使流型發(fā)生明顯變化,黑油模型計算的井筒流型全部為段塞流,組分模型計算時井底高溫高壓凝析油未析出或析出較少,以純氣流、環(huán)霧流和段塞流為主,所占井次比例依次下降,而井口主要流型未變,但各流型的井次比例呈明顯的反比關(guān)系(圖8),使按組分模型計算的各項誤差明顯小于黑油模型。
綜上所述,兩相流模型的選擇對凝析氣井井筒壓力預(yù)測的影響較大,而組分模型和黑油模型對部分兩相流模型和在一定條件對凝析氣井井筒壓力計算產(chǎn)生影響。推薦Gray模型+黑油模型和Hagedorn&Brown模型+組分模型來預(yù)測凝析氣井壓力剖面;液氣比0.5~5m3/104m3、產(chǎn)氣量大于5×104m3/d時,推薦采用無滑脫模型來計算壓力剖面。
3 組分模型計算時存在的主要問題
組分模型計算流體物性時,需要知道該井測試條件下流體組成,而該數(shù)據(jù)往往不可獲得。下面就流體組成數(shù)據(jù)的選取進行分析。
1)凝析氣藏相圖。根據(jù)凝析氣藏不同開發(fā)階段需要進行測試,但該數(shù)據(jù)只能反映某時段凝析氣藏流體的整體情況,而單井流體組成具有特殊性(各井產(chǎn)出流體氣油比、含水率與整個氣藏不一定相同)和時效性(各井隨開采時間的增加流體組成不同),采用凝析氣藏相圖與單井實際情況存在較大差異。
2)井筒壓力測試時氣分析數(shù)據(jù)。該數(shù)據(jù)取樣點一般為井口或分離器內(nèi)氣態(tài)氣,基本不含重組分或重組分極少,不能代表該井實際流體組成。
某井試油時分離器處氣分析及測試數(shù)據(jù)見表4。依據(jù)各制度測試的組分數(shù)據(jù)按PR狀態(tài)方程計算的相圖及井筒壓力溫度見圖9。3個制度下計算的井筒壓力溫度遠大于相圖的兩相區(qū),即井筒內(nèi)為純氣態(tài)。但從氣藏相圖(圖10)看,井筒壓力溫度應(yīng)為兩相區(qū),這主要是由于計算所采用的組分數(shù)據(jù)為分離器內(nèi)的氣態(tài)氣(低壓),重組分含量低,與氣藏相圖氣液兩相時組分數(shù)據(jù)差異大所致。分離器的氣組分隨著油嘴尺寸的增加(產(chǎn)氣量增大),井口油壓(25.5~24.5MPa)依次降低0.5MPa,輕烴逐漸下降,重組分逐漸增大,使其相圖逐漸右移。即相圖差異也較大。由于井筒油氣比(0.034~0.43m3/104m3)極小,其預(yù)測的井底流壓與實測值差1.2~2.2MPa,平均誤差5.39%。
4 結(jié)論
1)兩相流模型的選擇對凝析氣井井筒壓力預(yù)測的影響較大,而組分模型和黑油模型對部分兩相流模型和在一定條件對凝析氣井井筒壓力計算產(chǎn)生影響。
2)94口凝析氣井井筒壓力計算表明:推薦Gray模型+黑油模型和Hagedorn&Brown模型+組分模型預(yù)測凝析氣井壓力剖面;無滑脫模型適用條件是液氣比為0.5~5m3/104m3、產(chǎn)氣量大于5×104m3/d。
3)采用組分數(shù)據(jù)計算凝析氣井壓力剖面時,氣組分數(shù)據(jù)選擇尤為重要,町能導(dǎo)致井筒實際流體與計算流體不一致,使預(yù)測的誤差增大。
參考文獻
[1]喻西崇,胡永全,趙金洲,等.凝析氣井井眼壓降和溫降計算研究[J].鉆采工藝,2002,25(1):37-39.
YU Xichong,HU Yongquan,ZHAO Jinzhou,et al.Cornputational analysis of borehole pressure drop and temperature drop for gas condensate wellEJ].Drillin9&.Production Technology,2002,25(1):37-39.
[2]朱炬輝,胡永全,趙金洲,等.相態(tài)變化影響下的凝析氣井井筒壓力變化計算分析[J].大慶石油地質(zhì)與開發(fā),2006,25(6):50-52.
ZHU Juhui,HU Yongquan,ZHAO Jinzhou,et al.Calculation on change in borehole pressure of gas condensate well at the condition of phase change[J].Petroleum Geology&Oilfield Development in Daqing,2006,25(6):50-52.
[3]常志強.考慮多相流體復(fù)雜相態(tài)變化的凝析氣井生產(chǎn)動態(tài)分析方法[D].成都:西南石油學(xué)院,2005.
CHANG Zhiqiang.Method for analysis of multiphase cornplex phase behavior of condensate gas well production dynamic considerations[D].Chengdu,Southwest Petroleum Institute,2005.
[4]蘇如海,張正茂.PR狀態(tài)方程在凝析氣井井筒計算中的應(yīng)用[J].內(nèi)蒙古石油化工,2006,(3):128-129.
SU Ruhai,ZH ANG Zhengmao.The application of PR EOS in wellbore calculation of condensate wellEJ].Inner Mongolia Petrochemical Industry,2006(3):128-129.
[5]何志雄,孫雷,李士倫.凝析氣井井筒動態(tài)預(yù)測方法[J].中國海上油氣:地質(zhì),1998,30(5):66-69.
HE Zhixiong,SUN Lei,LI Shilun.Method for prediction of borehole performance in condensate gas well[J].China Offshore Oil and Gas:Geology,l998,30(5):66-69.
[6]GOVIER G W,FOGARASI M.Pressure drop in wells producing gas and condensate[J].Journal of Canadian Petroleum Technology,1975,14(4):28-41.
[7]PEFFER J W,MILLER M A,HILL A D.An improved method for calculating bottomhole pressures in flowing gas wells with liquid presentEJ].SPE Journal,1988,3(4):643-655.
[8]SADEGH A A.An integrated hydrodynamic/PVT vertical wellbore model for twcr-phase natural gas/liquid systems[D].University Park:Pennsylvania State University Press,2006.
[9]李士倫.天然氣工程[M].北京:石油工業(yè)出版社,2000.
LI Shilun.Natural gas engineering[M].Beijing:Petroleum Industry Press,2000.
[10]BRILL J P,MUKHERJEE H.Multiphase flow in wells[M].//SPE Monograph Series(Vol.17),Richardson Tex:Henry L.Doherty Memorial Fund of AIME,Society of Petroleum Engineers,1999.
[11]NUMBERE D,BRIGHAM W,STANDING M B.Correlations for physical properties of petroleum reservoir brines[R].Stanford:Stanford University,1977.
[12]DRANCHUK P M,ABU K H.Calculation of z factors for natural gases using equations of state[J].Journal of Canadian Petroleum Technology,1975,14(3):33-36.
[13]STANDING M B.A pressure-volume-temperature correlation for mixtures of California oil and gases[C]//Drilling and Production Practice,1947.New York:American Petroleum Institute,1947.
[14]BEGGS H D,ROBINSON J R.Estimating the viscosity of crude oil systems[J].Journal of Petroleum Technology,1975,27(9):1140-1141.
[15]LOHRENZ J,BRAY BG,CLARK C R.Calculating viscosities of reservoir fluids from their compositions[J].Journal of Petroleum Technology,1964,16(10):1171-1176.
[16]BEGGS H D.Production optimization using nodal analysis[M].Tulsa:OGCI Publication,1991.
[17]LEE A L,GONZALEZ M H,EAKIN B E.The viscosity of natural gases[J].Journal of Petroleum Technology,1966,18(8):997-1000.
[18]HOUGH E W,RZASA M J,W00D B B.Interfacial tensions at reservoir pressures and temperatures[J].Journal of Petroleum Technology,l951,3(2):57-60.
[19]HOUGH E W.Correlation of interracial tension of hydrocarbons[J].SPE Journal,l966,6(4):345-349.
[20]KATZ D LHandbook of natural gas engineering[M].New York:McGraw Hill Book Company Inc.,1959.
[21]HAGEDORN A R,BROWN K E.Experimental gtudy of pressure gradients occurring during continuous two phase flow in small-diameter vertical conduits[J].Journal of Petroleum Technology,1965,17(4):475-484.
[22]0RKISZEWSKI J.Predicting two-phase pressure drops in vertical pipes[J].Journal of Petroleum Technology,1967,19(6):829-838.
[23]GRAY H E.Vertical flow correlation in gas wells[S].User Manual for API 14B Subsurface Controlled Safety Valve Sizing Computer Program,2nd edition,API Appendix B,1978:38-41.
[24]MUKHERJEE H,BRILLJ P.Pressure drop correlations for inclined two-phase flow[J].Journal of Energy Resource Technology,1985,107(4):549-554.
[25]HASAN A R,KABIR C S.Two phase flow in vertical and inclined annuli[J].International Journal of Multiphase Flow,1992,l8(2):279-293.
本文作者:劉永輝 任桂蓉 薛承文 關(guān)志全 胡利平
作者單位:西南石油大學(xué)石油與天然氣工程學(xué)院
中國石油新疆油田公司工程技術(shù)研究院
中國石油阿南油氣田公司蜀南氣礦
中國石油西南油氣田公司川中油氣礦
您可以選擇一種方式贊助本站
支付寶轉(zhuǎn)賬贊助
微信轉(zhuǎn)賬贊助